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Abstract
The  propagation  and  reflection  of  arbitrarily  shaped  pulses  on  non-dispersive  parallel  conductors  of  finite
length with user defined cross section is simulated employing the discretized telegraph equation. The geome-
try  of  the  system  of  conductors  and  the  presence  of  dielectric  material  determine  the  capacities  and  induc-
tances that enter the calculation. The values of these parameters are found using an iterative Laplace equation
solving procedure and confirmed for certain calculable geometries including the line charge inside a box. The
evolving  pulses  and  the  resulting  crosstalk can  be plotted  at  any  instant  and –  in the  Mathematica  notebook
version  of  this  report  (http://www.physik.uni-bonn.de/~dieckman/)  –  be  looked  at  in  an  animation.  As  an
example a differential pair of microstrips as used in the ATLAS vertex detector is analysed.
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Introduction

Electrical pulses travelling on a conductor will induce voltages  and currents onto the neighbor conductors.To
estimate  the  size  of  this  influence  called  crosstalk  either  simulation  and/or  measurement  of  the  effect  is
needed. Fig. 1 shows the basic schematic of coupled lines (Ref. 1, p.196):

Figure 1

  

Figure 1. Two coupled pairs of conductors with parameters per unit length ('),  voltages and currents on a section of 
wires ranging from x to x+ x

The parameters R' (Resistance/m along the conductor), L' (Inductance/m of a circuit), C' (effective Capacity/m
between two conductors) and G' (Conductivity/m from one conductor to the next) are normalized to the length
of  the  wire  and  their  index  denotes  the  conductor  they  refer  to.  Their  numerical  values  can  be  found  by
measurement or calculation (see below).

At frequencies not too high the pulses are electromagnetic waves guided by the conductors.  The state
of  the  pulses  may  be  calculated  by  numerically  integrating  their  evolution  in  space  and  time  from  a  given
initial state of voltages and currents, subjected to the boundary conditions at either end of the conductor. The
voltages  u j  and  currents  ik  change  according  to  the  following  set  of  one  dimensional  partial  differential
equations called telegraph equations that can be read off Fig. 1:

(1)

x u1 R1 ' i1 L1 ' t i1 L12 ' t i2
x u2 R2 ' i2 L2 ' t i2 L12 ' t i1
x i1 C1 ' t u1 C12 ' t u21 G1 ' u1 G12 ' u21
x i2 C2 ' t u2 C12 ' t u21 G2 ' u2 G12 ' u21

with u21 = u2 -  u1 .  For  numerical  integration  these  equations  and  their  boundary  conditions  will  be  cast  into
another form that allows the calculation of discrete increments in time ( t) and space ( x). 

The end of the next section contains  a flip page animation of a model pulse travelling  back and forth
including its  behavior  at  the  wire ends.  In  a second  section  a method  is presented  to calculate  the capacities
and inductances  of  a given set  of linear  conductors  (including ground  planes and dielectrics)  by  numerically
solving  the  Laplace  equation.  Code  is  given  that  allows  precision  tests  against  known  geometries.  The  last
section  shows  then  the  application  of  all  this  to  the  "pigtail",  a  part  of  the  ATLAS  vertex  detector  for  high
energy  particles  being  assembled  at  CERN.  This  is  a  connection  made  of  microstrip  lines  on  kapton  foil
carrying signals from the inner part to an optoconverter further outside.

This document is an interactive notebook that may be used to carry out the calculation or to view the
animations  on  a  computer.  All  programming  is  done  in  Mathematica  (Ref.  8)   – code  is  shown  in  grey
boxes –, so the input may be easily adapted to get results on other geometries. 
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Integration of the Telegraph Equations

coupled Telegraph Equations

Rearrangement of the Equations

The  scheme  in  Fig.  1  shows  a  generic  situation  of  coupling,  where  everything  is  reduced  to  the
essentials. It is represented by the set of equations (1). To describe any 'real' setup, it is best to leave Fig. 1 and
equations (1) as they are and to project the properties of the situation at hand on to Fig. 1. 

Later on the coupling of two differential circuits will be considered, so all the capacitive coupling will
have to be expressed through the capacity C12 '   (45) in Fig. 1. In addition, to simplify matters, we may, as the
conductivity of capton is extremely low, put the G matrix safely to zero.

 To integrate the telegraph equations the set of equations (1) is rewritten with the time derivative term
on  the  left  hand  side  and  currents,  voltages  and  parameters  are  given  in  vector  and  matrix  notation
(Ref 2, p.182f):

(2)t u C' 1
x i

t i L' 1 R' i L' 1
x u

with  R', L', C'  as matrices [  ]: 

(3)

R'
R1 0

0 R2
, L'

L1 L1,2
L1,2 L2

,

C'
C1 ' C1,2 ' C1,2 '

C1,2 ' C2 ' C1,2 '
,

where the indices  point to the pairs of conductors  as is evident  from Fig.  1. For the following calculations  it
will  be  useful  to  collect  u  and  i  into  another  state  vector  v .  Both  equations  (2)   then  form  (4)  a  single
equation  containing  the  time  derivative  of  v  on  one  side  and  the  sum  of  two  matrix  operators  1  and  2

acting on v  at the other side :

(4)

v
u

i

t v
0 0

0 L' 1 R'
v x

0 C' 1

L' 1 0
v

1 v 2 v
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Mathematica Code  (verify Manipulation of Equations)

If you want to repeat or modify the calculations in the electronic version of this notebook:  
select the cell  bracket  enclosing all grey cells of  the corresponding Mathematica  Code section and press the
evaluate key 

This cell solves the system of equations (1) for the terms containing the time derivatives:

eq1 r1i1 l1 di1t l12 di2t du1x;
eq2 r2i2 l2 di2t l12 di1t du2x;
eq3 c1 du1t c12 du2t du1t di1x;
eq4 c2 du2t c12 du2t du1t di2x;
Solve eq1 0, eq2 0, eq3 0, eq4 0 ,

du1t, du2t, di1t, di2t Simplify

di1t
du2x l12 du1x l2 l2 r1i1 l12 r2i2

l122 l1 l2
,

di2t
du2x l1 du1x l12 l12 r1i1 l1 r2i2

l122 l1 l2
,

du1t
c2 di1x c12 di1x di2x

c12 c2 c1 c12 c2
,

du2t
c1 di2x c12 di1x di2x

c12 c2 c1 c12 c2

The next code example verifies the equality of the first equation of (2) with equations (1):

Inverse
c1 c12 c12

c12 c2 c12
. di1x, di2x Simplify

c2 di1x c12 di1x di2x
c12 c2 c1 c12 c2

,
c1 di2x c12 di1x di2x

c12 c2 c1 c12 c2

It is an easy exercise to check the second equation of (2) in the same way.
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Discretization of the Telegraph Equations

The state vector v (x,t) is represented on a discrete time and space grid as 

(5)v (x j , tn ) = v( j x, n t ) = v j
n ,             j = 0,..., M,    n = 0,..., N,

where   n  (time)  and  j  (space)  label  the  coordinates  of  the  grid  and  x,  t   stand  for  the  grid  spacing.  The
differential  operators  will  be  replaced  by  finite  differences,  then the  state  at  the  time  n+1  and  at  the  place  j
may be expressed by a linear  combination of some points at  the previous  time n.  In this way the calculation
proceeds in time one t after the other. For stability t has to be ≤ x/(speed of light). 

In case  the differencing scheme valid for each i  alone  in (4)  is known and results in a prescription

i  to update vj
n  (in the next two subsections this condition is shown to be fulfilled) :

(6)
1 : vj

n 1
1 vk

n
, t Damping Term

2 : vj
n 1

2 vk
n
, t Wave Equation ,

then the discrete telegraph equations follow with the method of operator splitting (Ref. 3, p.847) from (6) by
applying the updates one after the other:

(7)vj
n 1 = 1 2 vk

n
, t , t

differencing 2

The differencing scheme of 2  is presented in some detail. The time derivative is written as 

(8)
t v

vj
n 1

vj
n

t
,

so that with (4)

(9)vj
n 1

t x
0 C' 1

L' 1 0
vj
n

t x B vj
n
,

where  denotes the identity matrix and [B] is a shorthand for the LC matrix. Next the Lax-Wendroff two-step
scheme, which is second order in time, quite accurate and has little distortion  if the step size chosen is small
enough,  will be applied. First the space derivative is written as

(10)x v
vj 1
n

vj
n

x
,

where  [B]  is  considered  independent  of  x,  and  temporary  "half  step  grid  points"  are  constructed,  which
(Fig. 2) we put into (9)

(11)

v
j 1

2

n 1
2 vj 1

2

n

t
2

B
vj 1
n

vj
n

x

v
j 1

2

n 1
2 vj 1

2

n t
2 x

B vj 1
n

vj
n

and in the same way 

(12)v
j 1

2

n 1
2 vj 1

2

n t
2 x

B vj
n

vj 1
n

.
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Figure 2

  

Figure 2.  Location of temporary  half step points in the Lax-Wendroff Scheme

The j± 1
2  points on the right of (11) and (12) are now replaced by the averages of their left and right neighbors

(Lax replacement)

(13)vj 1
2

n 1
2

vj 1
n

vj
n

and vj 1
2

n 1
2

vj
n

vj 1
n

.

In a second step we use the four points connected by the cross in Fig. 3 to calculate vj
n 1  (Ref. 3, p.835):

vj
n 1

vj
n

t
B

v
j 1

2

n 1
2 v

j 1
2

n 1
2

x

Figure 3

  

Figure 3.   The new point on top is calculated using the staggered leapfrog scheme, it contains information from the 
three black ones
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With (11) and (12) the explicit result for 2  is

(14)

vj
n 1

2 vk
n
, t

vj
n t

2 x
B vj 1

n
vj 1
n t

x
B vj 1

n
2 vj

n
vj 1
n

t
x

2

B
2

vj
n 1

2
t
x

2

B
2

vj 1
n

vj 1
n

t
2 x

B vj 1
n

vj 1
n

differencing 1

The differencing scheme of 1  is somewhat simpler, because there is no space derivative. A second shorthand
[A] is introduced for the LR matrix:

(15)vj
n 1

1 vk
n
, t t

0 0

0 L' 1 R'
vj
n

A vj
n
.

Now 1  and 2  are combined as in (7) :

(16)

vj
n 1

A t
x

2
B

2
vj
n

1
2

t
x

2
A B

2
vj 1
n

vj 1
n t

2 x A B vj 1
n

vj 1
n

From (16)  we  get,  through  inserting  the parameter  matrices for  [A]  and  [B] and  separating  for  voltages  and
currents, at last to the discrete telegraph equations as shown in the next section.

the discrete Telegraph Equations

(17)

uj
n 1 t

x

2

C' 1 L' 1 uj
n

1
2

t
x

2

C' 1 L' 1 uj 1
n

uj 1
n t

x
C' 1 ij 1

n
ij 1

n

ij
n 1

t L' 1 R'
t
x

2

L' 1 C' 1 ij
n

1
2

t
x

2

L' 1 C' 1 ij 1

n
ij 1

n t
x

L' 1 uj 1
n

uj 1
n

There  are  now two  coupled  (voltage/current)  grids;  Point  (n+1,  j)  is  calculated  from the  three  points  on the
line n below {(n, j+1), (n, j), (n, j-1)} in a left right symmetric way, the computational molecule is an isosceles
triangle (cf. Fig. 3).
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special treatment of the boundary

At the edges (j = 1 or M) the outside points j = 0, M+1 are not available,  so we have to modify our method.
Mean values  of  differences  in  space  and  time (18)  are  used  to calculate  the  edge points  -  to understand  this
look at Fig. 4 .  As computational molecule there is now a rectangular box - (Ref. 4, p.107):

Figure 4

  

Fig. 4   The unknown point in the upper right edge is calculated from the three black ones by relating average 
differences in time and space via the matrices [A] and [B].

These  calculations  are  called  implicit,  because  the  term  to  be  solved  for  shows  up  on  the  right  and  the  left
hand side in the equations (18). 

(18)

vM
n 1

vM
n

vM 1
n 1

vM 1
n

2 t B vM
n 1

vM 1
n 1

vM
n

vM 1
n

2 x

vM
n 1 vM 1

n t
x B

1 t
x B vM

n vM 1
n 1

v1
n 1

v1
n

v2
n 1

v2
n

2 t B v2
n 1

v1
n 1

v2
n

v1
n

2 x

v1
n 1 v2

n t
x B

1 t
x B v1

n v2
n 1

After formation of the inverse matrix and multiplication with [A] we get these expressions:
right side:

(19)

uM
n 1 uM 1

n t
x

2
C ' 1 L ' 1

1
t
x

2
C ' 1 L ' 1 uM

n uM 1
n 1

2 t
x

t
x

2
C ' 1 L ' 1

1
C ' 1 iM

n
iM 1

n 1
,

iM

n 1
t L ' 1 R ' iM 1

n
2 t

x
t
x

2
L ' 1 C ' 1

1
L ' 1 uM

n uM 1
n 1

t
x

2
L ' 1 C ' 1

1
t
x

2
L ' 1 C ' 1 iM

n
iM 1

n 1

and left side:

(20)

u1
n 1 u2

n t
x

2
C ' 1 L ' 1

1
t
x

2
C ' 1 L ' 1 u1

n u2
n 1

2 t
x

t
x

2
C ' 1 L ' 1

1
C ' 1 i1

n
i2

n 1
,

i1

n 1
t L ' 1 R ' i2

n
2 t

x
t
x

2
L ' 1 C ' 1

1
L ' 1 u1

n u2
n 1

t
x

2
L ' 1 C ' 1

1
t
x

2
L ' 1 C ' 1 i1

n
i2

n 1
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explicit boundary conditions

Now the boundary conditions may be specified in the following ways:
open  set i = 0, leave u as in (19) or (20); 
short  set u = 0, leave i as in (19) or (20);
termination with z right/left  set u = i  * (+/- z), leave i as in (19) / (20).

Mathematica Code (Gaussian Pulse with Reflections)

RAM requirements: Front End 40 MB, Kernel 10 MB.

As an example the propagation  of gaussian  pulses placed in the middle of each of two wires is presented.  In
order to demonstrate clearly the propagation and reflection properties the mutual coupling, which disturbs the
shape of the pulses,  is set to zero.

Definitions

npl 100; number of plots,
may be set to smaller number if memory is tight

dt 1. 10 12; 1 psec
dx 0.004; 4 mm

dx
dt

speed of propagation for stability,

trade off with computational speed

0 4. 10 7 ;

0 10 9 35.95 ;
m 250; array dimension space distance m dx 1 m
nmax 4000;

simulation time steps, time considered: nmax dt
pl Round nmax npl ;

snapshot after every pl timesteps
k 2; 2 wires dimension of matrices

Parameters per Unit Length

res 2.; resistance in per meter

rm
res 0

0 res
;

cap 0 2; capacitance in F per meter

cm
cap 0

0 cap
; no mutual coupling

ci Inverse cm ;
ind 2 0 ; inductance in H per meter

lm
ind 0

0 ind
; no mutual coupling

li Inverse lm ;

zl 0.5 ind cap ; too low Termination left

zr 2.0 ind cap ; too high Termination right
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Initialization and Setup of Coefficient Matrices

id IdentityMatrix k ;
u1 u0 Table 0., m , k ; i1 i0 Table 0., m , k ;

m1 id
dt

dx

2

ci.li; m2
1

2

dt

dx

2

ci.li ; m3
1

2

dt

dx
ci;

m4 id dt li.rm . id
dt

dx

2

li.ci ;

m5
1

2

dt

dx

2

id dt li.rm . li.ci ;

m6
1

2

dt

dx
id dt li.rm .li;

m8 Inverse id
dt

dx

2

ci.li . id
dt

dx

2

ci.li ;

m9 2
dt

dx
Inverse id

dt

dx

2

ci.li .ci; m10 id dt li.rm;

m11 2
dt

dx
id dt li.rm . Inverse id

dt

dx

2

li.ci .li ;

m12

id dt li.rm .Inverse id
dt

dx

2

li.ci . id
dt

dx

2

li.ci ;

Static Initial Condition

u0 Transpose u0 ;

u0 1 u0 2 Table Exp i 125 2 80 , i, 1, m ;
u0 Chop Transpose u0 ;
p1 ListPlot Transpose u0 1 ,

PlotRange 0, m , 0, 1 , PlotJoined True,
AxesLabel "Length 4 mm ", "Amplitude" ;

A  gaussian pulse is placed in the middle of the wires, it is going to divide into two separate components.
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Calculate Evolution in Time and produce Plots

The  output  of  the  next  cell  shows  the  pulses  at  progressing  time  intervals.  If  their  enclosing  cell  bracket  is
selected and the Menu Command "Animate selected Graphics" is chosen, they display an animation.

this cell produces npl plots, view as animation
Timing
Do

main loop, calculate line n 1 in u and i grid
Do jp1 j 1; jm1 j 1;
u1 j m1.u0 j

m2. u0 jp1 u0 jm1 m3. i0 jp1 i0 jm1 ;
i1 j m4.i0 j m5. i0 jp1 i0 jm1

m6. u0 jp1 u0 jm1 , j, 2, m 1 ;
edges

u1 m u0 m 1
m8. u0 m u1 m 1 m9. i0 m i1 m 1 ;

i1 m m10.i0 m 1 m11. u0 m u1 m 1
m12. i0 m i1 m 1 ;

u1 1 u0 2 m8. u0 1 u1 2
m9. i0 1 i1 2 ;

i1 1 m10.i0 2 m11. u0 1 u1 2
m12. i0 1 i1 2 ;
static boundary conditions open: set i 0,

short: set u 0
u1 m, 2 zr i1 m, 2 ; termination right with z
u1 1, 2 zl i1 1, 2 ;

termination left with z
u1 1, 1 0.; wire 1 left short circuit
i1 m, 1 0.; wire 1 right open end
u0 u1; i0 i1; advance one step in time

do a snapshot of the voltages
If Mod n, pl 0,

plot voltage wire 1
p1 ListPlot

Transpose u1 1 , PlotRange 0, m , 0.6, 1 ,
PlotJoined True, DisplayFunction Identity ;
plot current wire 1

p2 ListPlot 250 Transpose i1 1 ,
PlotRange 0, m , 0.8, 0.6 ,
PlotJoined True, DisplayFunction Identity ;
plot voltage wire 2

p3 ListPlot
Transpose u1 2 , PlotRange 0, m , 0.6, 1 ,
PlotJoined True, DisplayFunction Identity ;

Show GraphicsArray p1 , p2 , p3 ,
DisplayFunction $DisplayFunction ;
get rid of small numbers to
accelerate calculation

u0 Chop u0 ; i0 Chop i0 ; Print n , n, nmax

Print "Fertig "
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3 selected Plots from the Animation

Two wires without coupling are simulated, each of which is carrying a left and right travelling component of
the  initial  pulse;  the  first  two  diagrams  show  u  and  i  of  the  same,  namely  the  first  wire,  the  third  diagram
displays the voltage of  the second wire.  The current is scaled up by a factor  that it  numerically gets roughly
the  same  size  as  the  voltage.  The  pulses  have  broken  up  in  two  parts  that  run  apart.  Edges  of  pulses  with
gradients of voltages and currents of equal sign move right, those with gradients of opposite sign move left. 
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The upper wire has a short at the left and is open at the right end, the second wire (diagram at the bottom) is
terminated left with Zl  = Z0 /2 and right with Zr  = 2 Z0 , where Z0 is the impedance L C  of the wire. These
boundary conditions cause reflection and transmission at either end of the wires.
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Now the reflected pulses have changed direction, the amplitude of the pulses on the second wire is reduced to
(Zx  - Z0 ) / (Zx  + Z0 ) of the original. 

The  simulated  pulses  demonstrate  the  expected  behaviour  including  reflection  at  the  wire  boundaries.  To
understand  any  real  situation  the  parameters  entering  the  telegraph  equation,  specifically  the  capacities  and
inductances  of  the  configuration  of  conductors  should  be  known  precisely   (the  calculations  of  the  next
sections reach an accuracy of a few %  – tested with coax and other geometries –).
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Numerical Calculation of Capacities and Inductances

Capacities

Definition of Capacitance, Coefficients of Induction and Coefficients of Capacity

In  a  system  of  n  conductors  the  equations  relating  the  'induced'  charge  on  one  conductor  to  the  potentials
(U or ) of all others (Ref. 5, p.318) read

(21)

Q1  = C11 *U1  + C12 *U2  + ... + C1 n *Un

Q2  = C21 *U1  + C22 *U2  + ... + C2 n *Un

      
Qn  = Cn1 *U1  + Cn2 *U2  + ... + Cnn *Un ,

where the Cij = C ji   (i≠j) are called 'coefficients of induction', Cii  is the capacitance of conductor i. 
The values of the C  are constants depending on geometry only, that means on the shapes and the arrangement
of the conductors. Add

(22)0 = Ci1 *Ui + Ci2 *Ui + ...+ Ci,i 1 *Ui  + Ci,i 1 *Ui  + ... + Cin *Ui  - Ci1 *Ui  - ... - Cin *Ui

to equation i of (21), and they can be reshuffled to contain  Maxwells 'coefficients of capacity'
 (Teilkapazitäten):

(23)

Q1  = C10 *U1  + C12 *(U1 U2 ) + ... + C1 n * U1 Un

Q2  = C21 * U2 U1  + C20 *U2  + ... + C2 n * U2 Un

      
Qn  = Cn1 * Un U1  + Cn2 * Un U2  + ... + Cn0 *Un .

The coefficients of capacity are connected to the coefficients of induction through the following equations:

(24)

Ci0  = k 1
n Cik

Cik  = - Cik          (i≠k). 
 

Ci0  is  known  as  'stray  capacity',  the  part  that  corresponds  to  the  field  that  goes  to  the  'outside',  where  the
fieldlines  connect  to the  surrounding  ground.  Now the meaning  of the  term 'capacitance'  defined  above also
becomes  clear:  the  capacitance  of  conductor  i  is  the  sum  of  its  stray  capacity  plus  all  its  coefficients  of
capacity with the other conductors of the system.

  The procedure outlined below finds the Cik  of a given configuration.  We then use (24) to calculate
the coefficients of capacity, a combination of which (according to the mode of operation) is to be put into (3).

Determination of the Coefficients of Induction in a System of Linear Conductors

Consider a system of conductors within a volume V filled with dielectric material  ( r ≠1) and/or empty space.
The potential energy of the conductors, being fixed at certain potentials i , may then be written as

(25)W  = 1
2 i 1

n
j 1
n Cij i j .

The induced charges will produce an electric field, whose shape is a consequence of the given geometry, and
whose energy amounts to

(26)W  = 1
2 V

D E V .

The energy of a charged system of conductors is thus stored in the electric  field between them. This offers a
neat way to calculate the capacitances and coefficients of induction of the configuration from the electric field
without quantitative  information  about the charge distribution,   –  once the field is known (Ref. 6,  p.53). The
capacitance  per  unit  length  Cii '  of  the  linear  conductor  i  pops  out  of  (25)  and  (26),  if  we integrate  over the
plane perpendicular to the conductor the electric field corresponding to the boundary conditions i =1 and all
other k = 0 :
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The energy of a charged system of conductors is thus stored in the electric  field between them. This offers a
neat way to calculate the capacitances and coefficients of induction of the configuration from the electric field
without quantitative  information  about the charge distribution,   –  once the field is known (Ref. 6,  p.53). The
capacitance  per  unit  length  Cii '  of  the  linear  conductor  i  pops  out  of  (25)  and  (26),  if  we integrate  over the
plane perpendicular to the conductor the electric field corresponding to the boundary conditions i =1 and all
other k = 0 :

(27)Cii '  = 
A r 0 E i E i x y

After the capacitances the coefficients of induction may be obtained from

(28)Cij '  = 1
2 ( 

A r 0 E ij E ij x y  - Cii ' - C jj ' ),

by considering  pairs of conductors,  where the indices of E  point to the two conductors,  whose potentials are
then set to 1. From (27) and (28) it is clear that the presence of any additional conductor will change the field
and will consequently have an effect on every other capacity.

Discrete Form of Gauss's Law with Dielectrics

It  remains  to  determine  the  electrical  field.  In  the  volume  outside  the  conductors  there  are  no  free  charges,
here the field obeys this form of Gauss's Law

(29)·D   = · E  = 0

with  = r 0 . As the field is the negative gradient of the potential , (29) reads with a space dependent (x,y)

(30)· E  = - (  ·  + ) = 0.

The terms containing the first derivatives act as additional sources to the Laplace equation that appears 
in (30).

The potential (x,y) is mapped onto a grid with ui, j  = (i x, j y). In the iterative relaxation process
used for elliptic pde's (Ref. 3, p.821) the Laplace operator  is discretized by the prescription that each point
is updated with  the average of  its  four neighbors.  i, j  is either  1  (for  vacuum or air)  or  equal  to the relative
dielectric constant of the material at the location of the corresponding grid point. 

Discretize first derivatives like (to second order for symmetry reasons, – first order would be shifted to
up and right) :

(31) x fi, j  = fi, j 1 fi, j 1

2 ,

that means, any structure, in order to be correctly included, must comprise at least two grid points. This is the
'resolution' of this simulation.

The following  update  procedure  is  applied  many  times  to  each  grid  point  starting  from actually  any
initial matrix ui, j , until the result no longer changes:

(32) ui, j  = ui 1, j ui 1, j ui, j 1 ui, j 1

4  + i, j 1 i, j 1

16 i, j
(ui, j 1 ui, j 1 ) + i 1, j i 1, j

16 i, j
(ui 1, j ui 1, j )

If the values at the boundaries are completely specified, a unique solution for u will be found slowly propagat-
ing  into  the  plane  from  the  fixed  boundaries.  The  number  of  iterations  and  hence  the  calculation  time  is
proportional to the difference of the arbitrary initial matrix and the final result. The distribution of the ui, j , the
relaxation converges to, is characterized by the boundary values and the Laplace operator, which enforces the
sum of the curvatures (  to second derivative in space) in x and y direction to be zero. That means, either both
are zero (a piece of a plane surface) or both have opposite sign and equal size (saddle form). The presence of
dielectrics reveals itself by a sudden jump of the gradient to lower values (see code example below).
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Mathematica Code  (Parallel Plate Capacitor)

RAM requirements: Front End 10 MB, Kernel 10 MB

A  grid  of  80  x  40  points  is  set  up.  In  all  of  the  following  we  have  to  keep  in  mind,  how  a  grid  matrix  is
mapped onto a rectangular coordinate system: the column index j marks the x-axis, increasing row numbers i
proceed in negative y-direction.

Two  conducting  planes  forming  a  capacitor  are  placed  within  a  grounded  rectangle,  between  the
planes a dielectric area is defined.

set up matrix:

m defines a matrix of operators that tell, how the point i,j on the grid is to be updated (32), v1 and v2 define
the fixed potential on conductor 1and 2 (the warnings on Part specification are harmless...).

v1=1.;v2=0.;(* potential of the electrodes 1 and 2 *)
nz=40; (* # of rows of the grid, divisible by 2 *)
ns=80; (* # of columns of the grid, divisible by 2 *)
u=.;m=.;m=Array[u,{nz,ns}];a=Array[u,{nz,ns}];
mb=Table[0,{nz},{ns}];
=Table[1,{i,1,nz},{j,1,ns}];

eps=4;
exl=20;exr=39;eyd=20;eyu=28; (* dielectric area *)
Do[Do[ [[i,j]]=eps,{i,eyd,eyu}],{j,exl,exr}];
Do[Do[a[[i,j]]=u[[i,j]],{j,1,ns}],{i,1,nz}]
Do[Do[
m[[i,j]]:=Evaluate[0.25(a[[i-1,j]]+a[[i,j-1]]+
a[[i+1,j]]+a[[i,j+1]])+0.0625/ [[i,j]](( [[i,j+1]]-
[[i,j-1]])(a[[i,j+1]]-a[[i,j-1]])+( [[i+1,j]]-
[[i-1,j]])(a[[i+1,j]]-a[[i-1,j]]))],

{j,2,ns-1}],{i,2,nz-1}]

— Part::partd : Part specification u 1, 1 is longer than depth of object.

— Part::partd : Part specification u 1, 1 is longer than depth of object.

— Part::partd : Part specification u 1, 2 is longer than depth of object.

— General::stop :
Further output of Part::partd will be suppressed during this calculation.

boundary conditions:

Do m 1, j : 0., j, 1, ns
Do m nz, j : 0., j, 1, ns
Do m i, 1 : 0., i, 1, nz
Do m i, ns : 0., i, 1, nz

Set location of the conductors in the operator matrix, also stored in mask mb :

xl1=20;xr1=39;yd1=16;yu1=17;xl2=20;xr2=39;yd2=30;yu2=31;
Do[Do[{m[[i,j]]:=v1;mb[[i,j]]=1;},{j,xl1,xr1}],{i,yd1,yu1}]
Do[Do[{m[[i,j]]:=v2;mb[[i,j]]=1;},{j,xl2,xr2}],{i,yd2,yu2}]
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p1 ListPlot3D 1,
ViewPoint 3., 1., 1. , DisplayFunction Identity ;

p2 ListPlot3D mb, ViewPoint 3., 1., 1. ,
DisplayFunction Identity ;

Show p1, p2, DisplayFunction $DisplayFunction

Graphics3D

This picture shows the location of the dielectrics and of the conductors in the plane.

calculate potential

To accelerate the calculation we obtain a rough guess u1 (without dielectrics) on a coarser grid 
(# points/4 -> faster ) as initial matrix. u1 has already some similarity to the true distribution:

nz1=nz/2;ns1=ns/2;u1=.;m1=.;
m1=Array[u1,{nz1,ns1}];a1=Array[u1,{nz1,ns1}];
Do[Do[a1[[i,j]]=u1[[i,j]],{j,1,ns1}],{i,1,nz1}]
Do[Do[
m1[[i,j]]:=Evaluate[0.25(a1[[i-1,j]]+a1[[i+1,j]]+a1[[i,j-1]]+
a1[[i,j+1]])],
{j,2,ns1-1}],{i,2,nz1-1}];
Do[m1[[1,j]]:=0.,{j,1,ns1}];
Do[m1[[nz1,j]]:=0.,{j,1,ns1}];
Do[m1[[i,1]]:=0.,{i,1,nz1}];
Do[m1[[i,ns1]]:=0.,{i,1,nz1}];
(* guess for coordinates:old/2;
mb is used to identify location of conductors*)
Do[Do[If[mb[[2i,2j]]==1,m1[[i,j]]=m[[2i,2j]]],{i,nz1}],
{j,ns1}]

— Part::partd : Part specification u1 1, 1 is longer than depth of object.

— Part::partd : Part specification u1 1, 2 is longer than depth of object.

— Part::partd : Part specification u1 1, 3 is longer than depth of object.

— General::stop :
Further output of Part::partd will be suppressed during this calculation.
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Let Laplace do his work...

u1=Table[0.,{i,1,nz1},{j,1,ns1}];
Timing[Do[{u1=m1;
If[Mod[i,500]==0,
Print[i," residual error:",Max[Flatten[Abs[u1-m1]]]]]},
{i,1,1000}]]

500 residual error:8.45628 10 6

1000 residual error:2.25683 10 8

22. Second, Null

The coarse grid u1 is interpolated to calculate intermediate points 
for the final higher resolution grid u (j -> x, i -> y)

p ListInterpolation Transpose u1 ;

Control plot of interpolation:

Plot3D p x, y , x, 1, ns1 , y, 1, nz1 ,
PlotRange All, PlotPoints 30, ViewPoint 3., 1., 1.

Control plot of interpolated potential.
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Copy coarse to fine grid as input for the main calculation 
(near the border the interpolation has to extrapolate a little):

u=Table[p[j/2,i/2],{i,1,nz},{j,1,ns}];

— InterpolatingFunction::dmval :

Input value
1
2
,

1
2

lies outside the range of data

in the interpolating function. Extrapolation will be used.

— General::stop : Further output of
InterpolatingFunction::dmval will be suppressed during this calculation.

Once again time for Laplace...

Timing[Do[{u=m;
If[Mod[i,100]==0,{err=Max[Abs[Flatten[u-m]]];
Print[i," residual error: ",err];
If[err<10^-6,Break[]]}]},{i,1,2000}]]

1200 residual error: 7.76124 10 7

120.533 Second, Null

ListPlot3D[u,
ImageSize->400,PlotRange->All,ViewPoint {3.,1.,1.}]

SurfaceGraphics

View of the resulting potential including dielectric material. The dielectric effects on the potential are evident
in the abrupt change of the gradient on the flank to the right of the peak. 
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contourplot with fieldlines

A contourplot is generated for later display:

cont ListContourPlot u, ImageSize 400,
PlotRange All, ContourShading False,
Contours 15, DisplayFunction Identity

ContourGraphics

The electric field vector is given as derivative of an interpolated function of the potential u :

wi ListInterpolation Transpose u , InterpolationOrder 1 ;
column index counts increments in x direction,

row index counts increments in y direction
use Transpose

ex Derivative 1, 0 wi ;
ey Derivative 0, 1 wi ;

The lines follow the field from the starting point x0, y0 uphill and downhill as far as possible...

FieldLine ex_InterpolatingFunction, x0_ ,
ey_InterpolatingFunction, y0_ :

Module x x0, y y0, l x0, y0 ,

xxmin Part ex, 1, 1, 1 , xxmax Part ex, 1, 1, 2 ,
yymin Part ex, 1, 2, 1 ,
yymax Part ex, 1, 2, 2 , emod10, xn, yn ,
search uphill

Do emod10 10. ex x, y 2 ey x, y 2 ;

If emod10 0., Break ;
xn ex x, y emod10 x; yn ey x, y emod10 y;
If xn xxmin xn xxmax

yn yymin yn yymax, Break ;

l Append l, xn, yn ; x xn; y yn , n, 1, 5000 ;

x x0; y y0;
search downhill

Do emod10 10. ex x, y 2 ey x, y 2 ;

If emod10 0., Break ;
xn ex x, y emod10 x; yn ey x, y emod10 y;
If xn xxmin xn xxmax

yn yymin yn yymax, Break ;

l Prepend l, xn, yn ; x xn; y yn , n, 1, 5000 ;

Line l

Needs "Graphics`Arrow`"
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Add directional arrows to the fieldlines (Ref. 9, p. 522):

AddArrow Line opts_ , d_, num_: 8 :
Module arr , n 0, pts Chop opts ,
Fold
If First #1 d && n num, n ;
AppendTo arr, Arrow Last #1 , #2, HeadScaling Absolute,

HeadCenter 0.5, HeadLength 4 ;
0, #2 , First #1 Sqrt Apply Plus, Last #1 #2 ^2 ,
#2 &, 0, First pts , Rest pts ;

arr

We let n fieldlines  run up and down from an ellipse with center xe, ye and half axes a, b. The density of the
field lines is weighted with the strength of the field at the starting points. The dielectric area is indicated with
a grey line. You have to experiment with the parameters to get a decent picture...

xe, ye 30, 16.5 ; a 14; b 10;
n 21; n 3 is the number of angular bins
eps ListInterpolation Transpose ;

sample the field strength on the ellipse

ft Table eps a Cos i 2 n xe, b Sin i 2 n ye

ex a Cos i 2 n xe, b Sin i 2 n ye ^2

ey a Cos i 2 n xe, b Sin i 2 n ye ^2 , i, 1, n ;

s Apply Plus, ft ;
nl i is number of lines 1

starting in the ith angular bin of the ellipse
nl Round Apply Plus, Transpose Partition ft, 3 s n ;
start ;

array of angles of the
starting points on the ellipse

Do Do AppendTo start, 2 n 3 i 1 j nl i 1 ,
j, 0, nl i , i, 1, n 3 ;
calculate lines one after the other

lines Table FieldLine ex, a Cos start i xe ,
ey, b Sin start i ye , i, 1, Length start ;

add single lines where appropriate
line1 FieldLine ex, 25 , ey, 34 ; AppendTo lines, line1 ;
line2 FieldLine ex, 34 , ey, 34 ; AppendTo lines, line2 ;
arrows Map AddArrow #, 6 &, lines ;

r1,r2 : electrodes, r3: dielectrics
r1 Rectangle xl1, yd1 , xr1, yu1 ;
r2 Rectangle xl2, yd2 , xr2, yu2 ;
r3 Line exl, eyd , exl, eyu ,

Line exl, eyu , exr, eyu , Line
exr, eyu , exr, eyd , Line exr, eyd , exl, eyd ;

Show Graphics GrayLevel 0.8 , Thickness 0.015 , r3 ,
cont, Graphics lines, arrows, r1, r2 , ImageSize 400,
Frame True, DisplayFunction $DisplayFunction
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Graphics

The  above  picture  shows  the  field  and  the  equipotential  lines  of  two  electrodes,  the  upper  one  at  zero,  the
lower at 1. All lines display a kink, whenever they enter or leave the dielectric (the greyish bordered area).

gradient field... 

The matrix of gradient vectors needs a complicated build:  the last row has same the y component as the row
above, the last column has the same x component as the column to its left:

g Table u i, j 1 u i, j , u i 1, j u i, j ,
i, 1, nz 1 , j, 1, ns 1 ;

lrow Table u nz, j 1 u nz, j ,
u nz, j u nz 1, j , j, 1, ns 1 ;

g Append g, lrow ;
lcol Append Table u i, ns u i, ns 1 ,

u i 1, ns u i, ns , i, 1, nz 1 ,
u nz, ns u nz, ns 1 , u nz, ns u nz 1, ns ;

g Transpose Append Transpose g , lcol ;
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calculate integral over electric field

Use (27) to get C  in [F/m] from the field:

0

10 9

35.95
;

cap 0 Sum i, j g i, j .g i, j , i, 1, nz , j, 1, ns

6.28904 10 11

results for the capacities 

The following results were obtained in three runs with the parameters vi as specified :
C11  = 62.9 [pF/m]      (v1 = 1, v2 = 0)
C22  = 75.7 [pF/m]      (v1 = 0, v2 = 1)
CC  =  66.1 [pF/m]     (v1 = 1, v2 = 1)
C12  = 0.5 (CC  - C11 - C22 ) =  - 36.3 [pF/m]

To understand the negative sign of C12  look at (21) with  U1  = 1 and all other voltages set to zero. From the
sign of  the  field  produced by  the  charges  on  both conductors  (see  picture of  field  above)  it  is  seen that   for
example C11  and C12  must be of opposite sign.

With (24) follow the coefficients of capacity:

C10  = 26.6 [pF/m]
C20  = 39.4 [pF/m]
C12  = 36.3 [pF/m]

There is good agreement with the theory. The formula from the textbook gives r,eff 0
A
d l  ≈ 36.8 [pF/m] (enter

A=19, d=13 and r,eff =(8*4+5*1)/(8+5)=2.85  as parameters). It takes into account the mutual capacity C12  of
the two conductors and ignores the surrounding ground.
The values Ci j  reflect the geometry of the electrodes and may be combined in various ways to model different
modes of operating this capacitor :
differential:                 effective  C = C12 + C10  C20   = 52.2 [pF/m] (  means here: in series )
electrode 1 grounded (C10 = ) : C = C12 +      C20       = 75.7 [pF/m]
electrode 2 grounded (C20 = ) : C = C12 +      C10       = 62.9 [pF/m]
The differences are sizeable, because the stray capacities are not negligible.
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Inductances

Definition of Coefficients of Self- and Mutual Inductance

There is  a far reaching  duality  between electric  and  magnetic  fields,  voltages  and currents,  or  capacities  and
inductances. Because of that, the calculation of the inductance of a circuit proceeds on a terrain already paved
by the previous section.

In a system of n circuits we have the equations

(33)

1  = L11 *I1  + L12 *I2  + ... + L1 n *In

2  = L21 *I1  + L22 *I2  + ... + L2 n *In

      
n  = Ln1 *I1  + Ln2 *I2  + ... + Lnn *In

where  i  is  the  magnetic  flux,  Ii  the  current  through  circuit  i  and  the  Lij  =  Lji  are  called  'coefficients  of
mutual inductance', Lii  is the self-inductance of circuit i.

Determination of the Coefficients of Inductance in a System of Linear Circuits

The potential energy of system of linear circuits, carrying certain currents Ii , may then be written as

(34)W  = 1
2 i 1

n
j 1
n Lij Ii I j .

There  will  be  a  magnetic  field,  whose  shape  is  a  consequence  of  the  given  geometry,  and  whose  energy
amounts to

(35)W  = 1
2 V

B H V .

The energy of a current  carrying system of circuits is thus stored in the magnetic field between them. So the
coefficients of  inductance may be found through the field.  We get the self-inductance  per  unit length  Lii '  of
the linear circuit i out of (34) and (35) after integration over the plane perpendicular to the conductor the field,
which corresponds to the boundary conditions Ii  = 1 and all other Ik  = 0 :

(36)Lii '  = 0 A
H i H i x y

After the self-inductance the coefficients of mutual inductance are obtained from

(37)Lij '  = 1
2 ( 0 A

H ij H ij x y  - Lii ' - Ljj ' ),

where the indices of H  point to the two circuits, whose currents were fixed to 1.

The Magnetic Field H

The magnetic field H  can be derived from the vector potential A :

(38)H  =   A

 Ampere's Law (   H  = J ) leads with (38) to

(39)    A  =  (  · A  ) -  A  = J ,

where J  is the current density. In our case we may orient the coordinate systems z axis parallel to the current.
As the vector potential  is parallel  to the current  (Ref. 7, p.304),  it  has only a z coordinate Az . If  in addition
the Coulomb Gauge (  · A  = 0) is applied, equation (39) changes to a Poisson equation

(40) Az  =  - Jz .

The distribution of the currents is not known, what will the boundary condition be like ?  This is similar to our
ignorance  of  the  charge  distribution  in  the  electric  case  above  (currents  =  moving  charges  after  all  !).  For a
way out imagine that currents of magnitude 1 have built up a vector potential according to (40). We cut out all
current carrying conductors 1,...,i,...,n of the plane along their outer surfaces and nail down the values vi of Az

at the cut  i,  as if  the  currents were still  there. Now the potential  satisfies in the  current free space  a Laplace
equation
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The distribution of the currents is not known, what will the boundary condition be like ?  This is similar to our
ignorance  of  the  charge  distribution  in  the  electric  case  above  (currents  =  moving  charges  after  all  !).  For a
way out imagine that currents of magnitude 1 have built up a vector potential according to (40). We cut out all
current carrying conductors 1,...,i,...,n of the plane along their outer surfaces and nail down the values vi of Az

at the cut  i,  as if  the  currents were still  there. Now the potential  satisfies in the  current free space  a Laplace
equation

(41) Az  = 0

plus certain boundary conditions. At each line of cut the value of Az  will be constant and can be found by trial
and error from the requirement 

(42)I =   H · l  =   ( A) · l  = ±1 or 0,

if  the  integration  path  l  is  around  the  surface  cut.  The  task  has  now  become  the  same  as  before,  namely
numerically solving the Laplace equation with (iteratively determined) boundary conditions.

Mathematica Code  (Coaxial Cable)

RAM requirements: Front End 15 MB, Kernel 25 MB

set up matrix:

This code is very similar to the code example of the previous section...

nz=130; (* divisible by 2 *)
ns=130; (* divisible by 2 *)
u=.;m=.;
m=Array[u,{nz,ns}];a=Array[u,{nz,ns}];mb=Table[0,{nz},{ns}];
Do[Do[a[[i,j]]=u[[i,j]],{j,1,ns}],{i,1,nz}]
Do[Do[m[[i,j]]:=Evaluate[0.25(a[[i-1,j]]+a[[i+1,j]]+a[[i,j-1]
]+a[[i,j+1]])],{j,2,ns-1}],{i,2,nz-1}]

— Part::partd : Part specification u 1, 3 is longer than depth of object.

— General::stop :
Further output of Part::partd will be suppressed during this calculation.

boundary conditions:

Do m 1, j : 0., j, 1, ns
Do m nz, j : 0., j, 1, ns
Do m i, 1 : 0., i, 1, nz
Do m i, ns : 0., i, 1, nz
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The value of the vector potential Az  at r0  -> v1 has to be adjusted according to (42). The vector potential is in
this case independent of , but changes radially even across the metal. A complete expression is given at the
end of this section. Usually one starts with a guess, here we may use the known value (see (43)) for the coax
cable (cross section Fig.5) :

Figure 5

  

Figure 5.  Inner wire and shield of a coax cable with their corresponding radii.

Because of the complete shielding of the coax the addition of a constant doesn't change the shape of the vector
potential between r0  and r1 . Therefore the vector potential at r1  can be put to zero:

(43)Az r = 1
4 Log r12

r2 .

v1=0.11248766;
v2=0;

Set two circular boundaries at r0  (inner wire) and r1  (shield):

xr, yr, r0, r1, r2 65, 65, 30., 60., 63 ;

Do Do b j xr 2 i yr 2 ;

If b 0 && b r0 0.0, m i, j : v1; mb i, j 1; ;

If b r1 0.0 , m i, j : v2; mb i, j 1; ,

i, nz , j, ns

If the boundaries are curved, they can only be mapped approximately to a square grid. In all tests the best way
to find the sets of grid line intersection points that belong to the boundary areas and are to be kept fixed during
the  relaxation  process,  was  just  to  include  or  exclude  the  points  according  to  the  radius  of  curvature  of  the
corresponding  boundary (see cell  above).  The general  agreement  between theory and numerical  calculation (
about 2%)  could – in the case of coaxial geometry – be somewhat  improved (-> 0.5%) by using a radius of
curvature that extends  the fixed areas by 0.3 units.  But this turned out not to be true for  other configurations
like for instance a pair of circular wires.
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calculate potential

Calculate rough guess u1 on coarse grid as input for main calculation:

nz1=nz/2;ns1=ns/2; u1=.;m1=.;
m1=Array[u1,{nz1,ns1}];a1=Array[u1,{nz1,ns1}];
Do[Do[a1[[i,j]]=u1[[i,j]],{j,1,ns1}],{i,1,nz1}]
Do[Do[
m1[[i,j]]:=Evaluate[0.25(a1[[i-1,j]]+a1[[i+1,j]]+a1[[i,j-1]]+
a1[[i,j+1]])],
{j,2,ns1-1}],{i,2,nz1-1}];
Do[m1[[1,j]]:=0.,{j,1,ns1}];
Do[m1[[nz1,j]]:=0.,{j,1,ns1}];
Do[m1[[i,1]]:=0.,{i,1,nz1}];
Do[m1[[i,ns1]]:=0.,{i,1,nz1}];
(* guess for coordinates:old/2 *)
Do[Do[If[mb[[2i,2j]]==1,m1[[i,j]]=m[[2i,2j]]],{i,nz1}],
{j,ns1}]

— Part::partd : Part specification u1 1, 3 is longer than depth of object.

— General::stop :
Further output of Part::partd will be suppressed during this calculation.

Laplace at work...

u1=Table[0.,{i,1,nz1},{j,1,ns1}];
Timing[Do[{u1=m1;
If[Mod[i,500]==0,
err=Max[Flatten[Abs[u1-m1]]];
Print[i," residual error: ",err];
If[err<10^-6,Break[]]]},{i,1,4000}]]

500 residual error: 4.21964 10 6

1000 residual error: 2.79694 10 8

280.867 Second, Null
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Copy coarse to fine grid:

p ListInterpolation u1 ;
u Table p i 2, j 2 , i, 1, nz , j, 1, ns ;
ListPlot3D u, PlotRange All ;

Control plot of interpolated vector potential.

restless Laplace...

Timing[Do[{u=m;If[Mod[i,100]==0,
{err=Max[Abs[Flatten[u-m]]];
Print[i," residual error: ",err];
If[err<10^-6,Break[]]}]},{i,1,7000}]]
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ListPlot3D[u,ViewPoint->{1.300, -2.400, 2.000},
ImageSize->400,PlotRange->All]

The picture shows the resulting vector potential with its logarithmic drop between r0  and r1 .

gradient field... 

g Table u i, j 1 u i, j , u i 1, j u i, j ,
i, 1, nz 1 , j, 1, ns 1 ;

lrow Table u nz, j 1 u nz, j ,
u nz, j u nz 1, j , j, 1, ns 1 ;

g Append g, lrow ;
lcol Append Table u i, ns u i, ns 1 ,

u i 1, ns u i, ns , i, 1, nz 1 ,
u nz, ns u nz, ns 1 , u nz, ns u nz 1, ns ;

g Transpose Append Transpose g , lcol ;

0 4. 10 7;
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Calculate  H  l  around inner conductor on a circle with radius r and center (xr,yr);
H · l  = ( y Az , - x Az ) · (-r d  sin , r d  cos ) and Az  is evaluated at (xr + r cos , yr + r sin )

dphi 100;
i Table Sum rr dphi

g Round yr rr Sin phi , Round xr rr Cos phi , 2
Sin phi g Round yr rr Sin phi ,
Round xr rr Cos phi , 1 Cos phi ,

phi, 0, 2 , dphi , rr, 31, 59
iMean Apply Plus, i Length i

0.997655, 0.99814, 0.997853, 0.995982, 0.993919,
0.99758, 0.995584, 0.998464, 0.995632, 0.998036, 0.997206,
0.996704, 1.0006, 0.998764, 0.998503, 0.999453, 0.999996,
1.00031, 0.999463, 1.00223, 1.00251, 1.00225, 1.00258,
1.00298, 1.00618, 1.00468, 1.00418, 1.00123, 1.01134

1.

The  above  cell  shows  the  mean  of  many  loop  integrals  that  all  should  give  the  same  result  as  long  as  the
radius rr does not touch other currents. v1 in the cell at the start of this section must be varied such that iMean
becomes 1. The following result is only correct, if the number for iMean is close enough to 1.

result:

With  H  = ( y Az , - x Az ) and (36) the external inductance (between r0  and r1 ) is in [H/m] :

(44)Lii '  = 0 A y Az
2

x Az
2 x y ,

leading to:

ind 0 Sum g i, j .g i, j , i, 1, nz , j, 1, ns

1.40587 10 7

This is in nice agreement with the theoretical value:

0

2
Log

r1

r0

1.38629 10 7
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For the complete coax including inner wire and shield we have (compare Fig. 5 with r0  = 30,  r1  = 60,  
r2  = 63; current in the wire =+1, current in the shield =-1) :
• the magnetic Field as function of r (Ref. 7, p.321f) :

h r_ : Which r r0,
r

2 r02
, r r2,

0., r r1,
1

2 r

r22 r2

r22 r12
, True,

1

2 r

Plot h r , r, 0, ns 2 , AxesLabel "r", "H r " ;

• the current density :

jz r_ :

Which r r0,
1

r02
, r r2, 0., r r1,

1

r12 r22
, True, 0

Plot jz r , r, 0, ns 2 , AxesLabel "r", "J r " ;
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• the corresponding vector potential az(r) ( Az r2  is forced to 0 ) :

az r_ : Which

r r0,
1

4

r2

r02
Log

r12

r02
r22

r22 r12
Log

r22

r12
,

r r2, 0.,

r r1,
1

4

r22 r2

r22 r12

r22

r22 r12
Log

r22

r2
,

True,
1

4
Log

r12

r2
1

r22

r22 r12
Log

r22

r12

Plot az r , r, 0, ns 2 , AxesLabel "r", "Az r " ;

The coax geometry allows easy comparison of the theoretical value of its self-inductance with the one
that was numerically calculated, because the boundary of the relaxation area has finite extension. Many of the
other configurations  of  conductors  with known  self-inductance  have  boundary  values of  the  vector  potential
that are 'zero at infinity' and require larger grids to reach good accuracy.

Some results with other geometries:

Coefficients of capacity of a pair of wires above a grounded plane:

Parameters used in the relaxation:
grid size : 240 * 150, center of wire 1 at (90,  40), center of wire 2 at (150, 40),  height h above ground = 40,
distance of wires a = 60, diameter d, s = 1 4 h2 a2 ,  t  = 4 h d , all lengths  in grid units,  the expressions
for the capacities are found in (Ref. 7, p. 118), capacities in Table 1 are given in [F/m]:

d 2 0

ln s t
C10 C20 num. 2 0 ln s

ln t 2 ln s 2 C12 num.

2 1.14 10 11 1.2 10 11 1.5 10 12 1.15 10 12

4 1.32 10 11 1.38 10 11 2.13 10 12 1.58 10 12

6 1.47 10 11 1.56 10 11 2.7 10 12 2.06 10 12

Table 1.  Analytical (zero at infinity) and numerical capacities of a pair of wires  [F/m]

The  main  contribution  to  the  large  differences  between  the  numerical  relaxation  and  the  formula  from  the
textbook stems from the fact that the relaxation, however large a grid is chosen, imposes its boundary condi-
tions  at a  finite  distance,  namely the border  of the grid,  while the  formula uses  a potential,  which  is 'zero  at
infinity'.  To better  check  the accuracy  of the relaxation,  a new formula was developed that  returns the  exact
potential of a charge in a box through the method of images with 'infinite  reflection'.  If a charge Q is placed
inside  a  (2  –  dimensional,  rectangular)  box,  an  infinite  number  of  image  charges  of  alternating  sign  will
appear in x– and y– direction (Fig. 6). Every remote image adds a term to the potential, which remains finite
because  of  the  alternating  sign.  They  'compress'  the  potential  function  in  such  a  way  that  its  value  at  the
borders of the box is constant.
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The  main  contribution  to  the  large  differences  between  the  numerical  relaxation  and  the  formula  from  the
textbook stems from the fact that the relaxation, however large a grid is chosen, imposes its boundary condi-
tions  at a  finite  distance,  namely the border  of the grid,  while the  formula uses  a potential,  which  is 'zero  at
infinity'.  To better  check  the accuracy  of the relaxation,  a new formula was developed that  returns the  exact
potential of a charge in a box through the method of images with 'infinite  reflection'.  If a charge Q is placed
inside  a  (2  –  dimensional,  rectangular)  box,  an  infinite  number  of  image  charges  of  alternating  sign  will
appear in x– and y– direction (Fig. 6). Every remote image adds a term to the potential, which remains finite
because  of  the  alternating  sign.  They  'compress'  the  potential  function  in  such  a  way  that  its  value  at  the
borders of the box is constant.

Figure 6

  

Figure 6.  'Mirror Cabinet' of a charge and its images in a 2 – dimensional box, the indicated group of 4 charges 
constitutes a term (n = 0, m = 1) in the sum below 

The summation and reordering of all terms then gives the potential function at the point x, y within the box as
a closed expression:

 (x,y) = Q
2 0 l f x, y, xs , ys , xq , yq k , where 

f
m,n

ln
2 n xs x xq

2 2 m ys y yq
2 2 n xs x xq

2 2 m ys y yq
2

2 n xs x xq
2 2 m ys y yq

2 2 n xs x xq
2 2 m ys y yq

2
,

and k is a reference point of the potential on the border. Indices m,n = 0 denote the term in the middle next to
the original  charge,  each  square  root  represents  the  distance  of  a  charge  to  the  point  P.  The meaning  of  the
variables is explained in Fig. 6. The double sum converges well, only a few tens of terms are needed in x and
y direction.  In  addition   the  correct  boundary  conditions   (0,  y)  =   (xs ,  y)  =   (x,  0)  =   (x,  ys )  =  k  are
fulfilled at the edges of the box. For the x – direction this can be seen by writing out a few terms of the sum in
the index n: at x = xs terms n=0 and n=1 cancel, then n=-1 and n=2 and so on, at x = 0 the parts of term n=0
cancel, then -1 and 1, -2 and 2 etc. A similar argument is valid for the y – direction. The boundary conditions
are also evident from the symmetry in Fig. 6 with respect to (x = 0 or x = xs ) or (y = 0 or y = ys ).
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The above double infinite sum is equal to (Ref. 10)

f = 12 ln 1
x xq
2 xs

ys
xs

y yq
2 ys , ys xs 2

1
x xq
2 xs

ys
xs

y yq
2 ys , ys xs 2

1
x xq
2 xs

ys
xs

y yq
2 ys , ys xs 2

1
x xq
2 xs

ys
xs

y yq
2 ys , ys xs 2 ,

with the first elliptic theta function defined as (Ref. 8, p.778)

1 u, q 2
n 0

1 n q n 1 2 2

sin 2 n 1 u . (The sum converges very fast...)

A control plot of f displays the typical double periodic behaviour (as in Fig. 6) :

xs 20; ys 30; xq 5.1; yq 4.1; q Exp ys xs ;

ContourPlot 1 2 Log Chop

EllipticTheta 1,
x xq

2 xs
I
y yq

2 xs
, q

EllipticTheta 1,
x xq

2 xs
I
y yq

2 xs
, q

EllipticTheta 1,
x xq

2 xs
I
y yq

2 xs
, q

EllipticTheta 1,
x xq

2 xs
I
y yq

2 xs
, q

EllipticTheta 1,
x xq

2 xs
I
y yq

2 xs
, q

EllipticTheta 1,
x xq

2 xs
I
y yq

2 xs
, q

EllipticTheta 1,
x xq

2 xs
I
y yq

2 xs
, q

EllipticTheta 1,
x xq

2 xs
I
y yq

2 xs
, q ,

x, 65, 65 , y, 65, 65 ,

PlotPoints 100, ContourShading False

Each one of the four leaves of the "flowers" in the above picture to the left represents the exact distribution of
the potential of a line charge inside a conducting box. The picture to the right shows a section containing just
the central leaf, plotted is the area of the containing box with sides xs and ys.
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The coefficients  of capacity  of two wires 1  and 2 with diameter  d at the positions  cited at  the begin-
ning of this section may then be found according to (23) and (Ref. 7, p. 118) with
f x1 , y1 d 2, xs , ys , x1 , y1 f11 , 
f x1 , y1 d 2, xs , ys , x2 , y2 f12 ,
f x2 , y2 d 2, xs , ys , x1 , y1 f21 ,
f x2 , y2 d 2, xs , ys , x2 , y2 f22   
 from 

 C10 '= 2 0 f22 f12

f11 f22 f12 f21
,  C20 '= 2 0 f11 f21

f11 f22 f12 f21
,  C12 '= 2 0 f12

f11 f22 f12 f21
, C21 '= 2 0 f21

f11 f22 f12 f21
: 

d new formula C10 C20 num. new formula C12 C21 num.

2 1.2 10 11 1.2 10 11 1.22 10 12 1.15 10 12

4 1.41 10 11 1.38 10 11 1.76 10 12 1.58 10 12

6 1.56 10 11 1.56 10 11 2.26 10 12 2.06 10 12

Table 2.  Analytical (zero at boundary of the box) and numerical capacities of a pair of wires  [F/m]

The agreement (cf. Table 2) is much better for the stray capacities and reasonable for the mutual capacity.

Coefficients of inductance of a pair of wires:

If the current flowing through a circuit is kept constant the magnetic field is insensitive to whether the vector
potential has its zero boundary at infinity or at the border of a box, because the rotation of the vector potential
doesn't  change  –  in  contrast  to  the  gradient  of  the  electric  potential.  This  is  accounted  for  in  the  relaxation
calculation by the necessary readjustment of the vector potential (42) at the edge of the conductors so that the
current  stays  at  1.  Then  the  formula  for  the  self-inductance  (l  =  0 Log a r )  and  mutual  induc-
tance (l12  = 0 2 Log r14 r23 r13 r24 ) from the textbook (Ref. 7, p.316, 325) can be directly
compared to the numerical computation. The calculation was done on a grid of 120 * 90 points, the positions
of the conductors 1 to 4 lying at (60, 50), (50, 50) and (60, 40), (70, 40) respectively. The loop integrals (42)
were taken with radii  ranging from 4 to 6 in steps of 0.2, then their mean was used to determine the current.
The results for l1 , the self-inductance of circuit 1, (one circuit at current 1, the other at current zero – as if not
present –), l2 and ll  (both circuits at current 1) are given below together  with the corresponding values of the
vector potential.

r = 1   l   = 9.21*10^-7 [H/m]:
l1  = 9.19*10^-7;   v1 = 0.370859;    v2 = -0.3628862;  v3 = -0.06284042;  v4 = -0.03036495;
l2  = 9.16*10^-7;   v1 = 0.0259072;  v2 =  0.0579781;  v3 =   0.352414;      v4 = -0.381698;
ll  = 1.758*10^-6; v1 = 0.396796;    v2 = -0.3049608;  v3 =   0.289506       v4 = -0.4120585;

r = 2 l   = 6.44*10^-7 [H/m]:
l1  = 6.65*10^-7;    v1 = 0.2702775;  v2 = -0.2609418;  v3 = -0.0589633;   v4 = -0.0294141;
l2  = 6.64*10^-7;    v1 = 0.024736;    v2 =  0.053704;    v3 =   0.250446;     v4 = -0.281441;
ll  = 1.26*10^-6;    v1 = 0.294926;    v2 = -0.2073;        v3 =  0.191429;      v4 = -0.310924;

r = 3 l   = 4.82*10^-7 [H/m]:
l1  = 4.67*10^-7;     v1 = 0.193345;     v2 = -0.179803;  v3 = -0.0505313;  v4 = -0.0272583;
l2  = 4.66*10^-7;     v1 = 0.02257533; v2 =  0.045243;  v3 =   0.1695425;  v4 = -0.203956;
ll  = 8.798*10^-7;   v1 = 0.215993;     v2 = -0.134556;  v3 =  0.118963;     v4 = -0231246;
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The formula for the mutual inductance had to be modified to include the dependence on the wire radius:

l12 r 0

2
Log

r14 r r23 r
r13 r r24 r

.

rij  denotes  the distance  of conductors  i and  j. Three values of the mutual  inductance for  r  = 1, 2,  3, calcu-
lated with relaxation, are shown as black dots, the thin line represents the formula :

The overall agreement of the relaxation calculation with the theoretical expressions is satisfactory.

The procedures  developed  until  now will  be  applied to  calculate  the  crosstalk  of coupled  microstrip  lines  in
the following section.

The Pigtail

The physical dimensions of the pigtail connector for the ATLAS detector are shown in Fig. 7.

Figure 7

  

Figure 7.  Cross section of the Pigtail connector. The conductors have a thickness of 17 .

Size and distance of the 4 conductors and the dielectric foil are mapped onto a 446 * 80 grid to calculate the
coefficients of capacity and inductance of this system. Pairs of conductors are operated as differential lines to
minimize disturbances. The width and distance of the conductors will be 22 and 66 grid squares, the thickness
of the conductors and the dielectric (  = 4) will be 3 and 9 squares. The numbers of squares should be chosen
as large as program memory allows to minimize quantization error.
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Mathematica Code  (Coefficients of Induction for the pigtail)

RAM requirements: Front End 40 MB,Kernel 80 MB

v1=1.;v2=1.;v3=0.;v4=0.;(* potential of the electrodes *)
nz=80; (* # of rows of the grid, divisible by 2 *)
ns=446; (* # of columns of the grid, divisible by 2 *)
u=.;m=.;m=Array[u,{nz,ns}];a=Array[u,{nz,ns}];
mb=Table[0,{nz},{ns}];
=Table[1,{i,1,nz},{j,1,ns}];

eps=4;
exl=1;exr=ns;eyd=1;eyu=10; (* dielectric area *)
Do[Do[ [[i,j]]=eps,{i,eyd,eyu}],{j,exl,exr}];
Do[Do[a[[i,j]]=u[[i,j]],{j,1,ns}],{i,1,nz}]
Do[Do[
m[[i,j]]:=Evaluate[0.25(a[[i-1,j]]+a[[i,j-1]]+a[[i+1,j]]+
a[[i,j+1]])+
0.0625/ [[i,j]](( [[i,j+1]]- [[i,j-1]])(a[[i,j+1]]-
a[[i,j-1]])+( [[i+1,j]]- [[i-1,j]])(a[[i+1,j]]-a[[i-1,j]]))],
{j,2,ns-1}],{i,2,nz-1}]
Do[m[[1,j]]:=0.,{j,1,ns}]
Do[m[[nz,j]]:=0.,{j,1,ns}]
Do[m[[i,1]]:=0.,{i,1,nz}]
Do[m[[i,ns]]:=0.,{i,1,nz}]
xl1=80;xr1=102;yd1=11;yu1=14;
xl2=168;xr2=190;yd2=11;yu2=14;
xl3=256;xr3=278;yd3=11;yu3=14;
xl4=344;xr4=366;yd4=11;yu4=14;
Do[Do[{m[[i,j]]:=v1;mb[[i,j]]=1;},{j,xl1,xr1}],{i,yd1,yu1}]
Do[Do[{m[[i,j]]:=v2;mb[[i,j]]=1;},{j,xl2,xr2}],{i,yd2,yu2}]
Do[Do[{m[[i,j]]:=v3;mb[[i,j]]=1;},{j,xl3,xr3}],{i,yd3,yu3}]
Do[Do[{m[[i,j]]:=v4;mb[[i,j]]=1;},{j,xl4,xr4}],{i,yd4,yu4}]
(* uncomment next lines to verify coordinates *)
p1=ListPlot3D[ -1,ViewPoint {3.,1.,1.},
      DisplayFunction Identity];
p2=ListPlot3D[mb,ViewPoint {3.,1.,1.},
DisplayFunction Identity];
Show[p1,p2,DisplayFunction $DisplayFunction];

— Part::partd : Part specification u 1, 1 is longer than depth of object.

— Part::partd : Part specification u 1, 1 is longer than depth of object.

— Part::partd : Part specification u 1, 2 is longer than depth of object.

— General::stop :
Further output of Part::partd will be suppressed during this calculation.
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The picture shows the location of the conductors and the dielectric material.

nz1=nz/2;ns1=ns/2;u1=.;m1=.;
m1=Array[u1,{nz1,ns1}];a1=Array[u1,{nz1,ns1}];
Do[Do[a1[[i,j]]=u1[[i,j]],{j,1,ns1}],{i,1,nz1}]
Do[Do[m1[[i,j]]:=Evaluate[0.25(a1[[i-1,j]]+a1[[i+1,j]]+
a1[[i,j-1]]+a1[[i,j+1]])],{j,2,ns1-1}],{i,2,nz1-1}];
Do[m1[[1,j]]:=0.,{j,1,ns1}];
Do[m1[[nz1,j]]:=0.,{j,1,ns1}];
Do[m1[[i,1]]:=0.,{i,1,nz1}];
Do[m1[[i,ns1]]:=0.,{i,1,nz1}];
(* guess for coordinates:old/2;mb:location of conductors *)
Do[Do[If[mb[[2i,2j]]==1,m1[[i,j]]=m[[2i,2j]]],{i,nz1}],
{j,ns1}]
u1=Table[0.,{i,1,nz1},{j,1,ns1}];
Timing[Do[{u1=m1;If[Mod[i,500]==0,
Print[i," residual error:",Max[Flatten[Abs[u1-m1]]]]]},
{i,1,3000}]]

p ListInterpolation Transpose u1 ;
Plot3D p x, y , x, 1, ns1 , y, 1, nz1 ,
PlotRange All, PlotPoints 30, ViewPoint 3., 1., 1.

Control plot of interpolated potential, two conductors at potential 1.
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u=Table[p[j/2,i/2],{i,1,nz},{j,1,ns}];
Timing[Do[{u=m;
If[Mod[i,100]==0,{err=Max[Abs[Flatten[u-m]]];
Print[i," residual error: ",err];
If[err<10^-6,Break[]]}]},{i,1,7000}]]
ListPlot3D[u,
ImageSize->400,PlotRange->All,ViewPoint {3.,1.,1.}];

— InterpolatingFunction::dmval :

Input value
1
2
,

1
2

lies outside the range of data

in the interpolating function. Extrapolation will be used.

— InterpolatingFunction::dmval :

Input value 1,
1
2

lies outside the range of data

in the interpolating function. Extrapolation will be used.

— InterpolatingFunction::dmval :

Input value
3
2
,

1
2

lies outside the range of data

in the interpolating function. Extrapolation will be used.

— General::stop : Further output of
InterpolatingFunction::dmval will be suppressed during this calculation.

100 residual error: 0.000417988

6200 residual error: 1.03883 10 6

6300 residual error: 9.82263 10 7

8891.7 Second, Null

Potential distribution of the pigtail including dielectrics, with the first two conductors set to potential 1.

cont ListContourPlot u, ImageSize 400,
PlotRange All, ContourShading False,
Contours 15, DisplayFunction Identity

wi ListInterpolation Transpose u , InterpolationOrder 1 ;
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column index counts increments in x direction,
row index counts increments in y direction
use Transpose

ex Derivative 1, 0 wi ;
ey Derivative 0, 1 wi ;
FieldLine ex_InterpolatingFunction, x0_ ,

ey_InterpolatingFunction, y0_ :

Module x x0, y y0, l x0, y0 ,

xxmin Part ex, 1, 1, 1 , xxmax Part ex, 1, 1, 2 ,
yymin Part ex, 1, 2, 1 ,
yymax Part ex, 1, 2, 2 , emod10, xn, yn ,
search uphill

Do emod10 10. ex x, y 2 ey x, y 2 ;

If emod10 0., Break ;
xn ex x, y emod10 x; yn ey x, y emod10 y;
If xn xxmin xn xxmax

yn yymin yn yymax, Break ;

l Append l, xn, yn ; x xn; y yn , n, 1, 5000 ;

x x0; y y0;
search downhill

Do emod10 10. ex x, y 2 ey x, y 2 ;

If emod10 0., Break ;
xn ex x, y emod10 x; yn ey x, y emod10 y;
If xn xxmin xn xxmax

yn yymin yn yymax, Break ;

l Prepend l, xn, yn ; x xn; y yn , n, 1, 5000 ;

Line l

Needs "Graphics`Arrow`"
AddArrow Line opts_ , d_, num_: 8 :
Module arr , n 0, pts Chop opts ,
Fold If First #1 d && n num, n ;

AppendTo arr, Arrow Last #1 , #2, HeadScaling Absolute,
HeadCenter 0.5, HeadLength 4 ;

0, #2 , First #1 Sqrt Apply Plus, Last #1 #2 ^2 ,
#2 &, 0, First pts , Rest pts ; arr

1
xe, ye 91, 12.5 ; a 13; b 6;

n 21; n 3 is the number of angular bins
eps ListInterpolation Transpose ;

sample the field strength on the ellipse

ft Table eps a Cos i 2 n xe, b Sin i 2 n ye

ex a Cos i 2 n xe, b Sin i 2 n ye ^2

ey a Cos i 2 n xe, b Sin i 2 n ye ^2 , i, 1, n ;

s Apply Plus, ft ;
nl i is number of lines 1

starting in the ith angular bin of the ellipse
nl Round Apply Plus, Transpose Partition ft, 3 s n ;
start ;

array of angles of the
starting points on the ellipse

Do Do AppendTo start, 2 n 3 i 1 j nl i 1 ,
j, 0, nl i , i, 1, n 3 ;
calculate lines one after the other
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lines Table FieldLine ex, a Cos start i xe ,
ey, b Sin start i ye , i, 1, Length start ;

add single lines where appropriate
line1 FieldLine ex,25 , ey,34 ;

AppendTo lines,line1 ;line2 FieldLine ex,34 , ey,34 ;
AppendTo lines,line2 ;

arrows Map AddArrow #, 6 &, lines ;
r1,r2 : electrodes, r3: dielectrics

r1 Rectangle xl1, yd1 , xr1, yu1 ;
r2 Rectangle xl2, yd2 , xr2, yu2 ;
r3 Rectangle xl3, yd3 , xr3, yu3 ;
r4 Rectangle xl4, yd4 , xr4, yu4 ;
r5 Line exl, eyd , exl, eyu ,

Line exl, eyu , exr, eyu , Line
exr, eyu , exr, eyd , Line exr, eyd , exl, eyd ;

Show Graphics GrayLevel 0.8 , Thickness 0.015 , r5 ,
cont, Graphics lines, arrows, r1, r2, r3, r4 ,
ImageSize 400, Frame True,
DisplayFunction $DisplayFunction

ContourGraphics

Graphics

Field lines and equipotential lines of the pigtail, the two conductors to the left on potential 1, the others on 0.
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g Table u i, j 1 u i, j , u i 1, j u i, j ,
i, 1, nz 1 , j, 1, ns 1 ;

lrow Table u nz, j 1 u nz, j ,
u nz, j u nz 1, j , j, 1, ns 1 ;

g Append g, lrow ;
lcol Append Table u i, ns u i, ns 1 ,

u i 1, ns u i, ns , i, 1, nz 1 ,
u nz, ns u nz, ns 1 , u nz, ns u nz 1, ns ;

g Transpose Append Transpose g , lcol ;

2.58572 10 10

The following results were obtained in runs with the parameters vi as specified :

C11    =  129.529 [pF/m]      (v1 = 1, v2 = 0, v3 = 0, v4 = 0)
C22    =  129.527 [pF/m]      (v1 = 0, v2 = 1, v3 = 0, v4 = 0)
C33   =  129.527 [pF/m]      (v1 = 0, v2 = 0, v3 = 1, v4 = 0)
C44    =  129.529 [pF/m]      (v1 = 0, v2 = 0, v3 = 0, v4 = 1)

CC12 =  258.572 [pF/m]      (v1 = 1, v2 = 1, v3 = 0, v4 = 0)  
28

 C12 = - 0.242     [pF/m] 
CC23 =  258.569 [pF/m]      (v1 = 0, v2 = 1, v3 = 1, v4 = 0)     C23 = - 0.242     [pF/m] 
CC34 =  258.572 [pF/m]      (v1 = 0, v2 = 0, v3 = 1, v4 = 1)     C34 = - 0.242     [pF/m] 
CC13 =  259.049 [pF/m]      (v1 = 1, v2 = 0, v3 = 1, v4 = 0)     C13 = - 0.0035   [pF/m] 
CC24 =  259.049 [pF/m]      (v1 = 0, v2 = 1, v3 = 0, v4 = 1)     C24 = - 0.0035   [pF/m] 
CC14 =  259.059 [pF/m]      (v1 = 1, v2 = 0, v3 = 0, v4 = 1)     C14 =   0             [pF/m] 

Using (24) the coefficients of capacity come out to be

C10  = 129.28 [pF/m] , C20  = 129.04 [pF/m] , C30  = 129.04 [pF/m] , C40  = 129.28 [pF/m] ,
C12  = 0.242   [pF/m] , C23  = 0.242   [pF/m] , C34  = 0.242   [pF/m] ,
C13  = 0.0035 [pF/m] , C24  = 0.0035 [pF/m] ,
C14  = 0          [pF/m] 

All ten coefficients of capacity form a five node network (Fig. 8). To describe two differential  pairs we need
to combine the ten into six effective capacities  Cij  between the nodes 1 to 4, to each of which all ten coeffi-
cients will contribute. C12  of the first differential  line (C1 '  in Fig. 1) is the whole capacity from node 1 to 2.
C34  of  the  second  differential  line  (C2 '  in  Fig.  1)  is  the  total  capacity  from  node  3  to  4.  For  the  coupling
capacity (C12 '  in Fig. 1)  there is a special twist: Any change of the potential on node 1 will  couple via C13  to
node 3 and via C14  to node 4 and is (because of the dominating Ci0 's) hardly seen as a voltage on the second
pair (common mode rejection of the differential line), the same can be said for changes of potential on node 2;
therefore the coupling is given by 

(45)C12 ' = C23  - C24  - (C13  - C14 ).

This completes the expression of all three capacities found in Fig. 1 through the Cij  of the pigtail. Their values
will be used in the code example below.

Now in order to find the effective capacity Cij  between two nodes i and j we reduce the network node
by node through replacing successively star-type nodes with box-type nets, which are then parallel to the rest
of the network,  until there are only two nodes left (Ref. 7, p.31f).  As you will  see, every reduction blows up
the resulting expression quite a bit, so the symbolic capability of Mathematica comes to good use here.
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Figure 8

    

Figure 8.  Upper part: Most general capacitive network consisting of 5 nodes (0-4). 
Lower part: Successive reduction to two nodes

Equation (45) shows how the new box impedance connecting nodes  and  is expressed by all the star legs:

(46)Z , Z ,r Z ,r
1

n
1

Z ,r
,

where n is the number of legs of the star-type node r to be replaced. 
The cell below contains an auxiliary function to calculate parallel impedances.

par z1_, z2_ :
z1 z2

z1 z2

We get 6, 3 and at last 1 expression corresponding to the thin lines in the lower part of Fig. 8.
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Replace node 4 :

zz10 par z10, z14 z40
1

z40

1

z14

1

z24

1

z34
Simplify

z10 z24 z34 z40 z14 z34 z40 z24 z34 z40
z10 z24 z34 z24 z34 z40 z14 z24 z34 z24 z40 z34 z40

zz20 par z20, z24 z40
1

z40

1

z14

1

z24

1

z34
Simplify

z20 z24 z34 z40 z14 z34 z40 z24 z34 z40
z24 z34 z40 z14 z20 z34 z34 z40 z24 z34 z40

zz30 par z30, z34 z40
1

z40

1

z14

1

z24

1

z34
Simplify

z30 z24 z34 z40 z14 z34 z40 z24 z34 z40
z24 z34 z40 z14 z34 z40 z24 z30 z34 z40

zz12 par z12, z14 z24
1

z40

1

z14

1

z24

1

z34
Simplify

z12 z24 z34 z40 z14 z34 z40 z24 z34 z40
z12 z24 z34 z40 z14 z34 z40 z24 z34 z40

zz13 par z13, z14 z34
1

z40

1

z14

1

z24

1

z34
Simplify

z13 z24 z34 z40 z14 z34 z40 z24 z34 z40
z24 z13 z34 z40 z14 z34 z40 z24 z34 z40

zz23 par z23, z24 z34
1

z40

1

z14

1

z24

1

z34
Simplify

z23 z24 z34 z40 z14 z34 z40 z24 z34 z40
z24 z34 z40 z14 z23 z34 z40 z24 z34 z40
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Replace node 0:

zzz12 par zz12, zz10 zz20
1

zz10

1

zz20

1

zz30
Simplify

— General::spell1 : Possible spelling error: new
symbol name "zzz12" is similar to existing symbol "zz12".

z12 z20 z30 z24 z34 z40 z14 z34 z40 z24 z34 z40
z10 z24 z34 z30 z40 z20 z30 z40

z14 z30 z34 z40 z24 z34 z40
z20 z34 z30 z40 z24 z30 z34 z40

z30 z20 z24 z34 z40 z14 z34 z40 z24 z34 z40
z12 z20 z24 z34 z40

z14 z20 z34 z34 z40 z24 z34 z40
z10 z34 z24 z30 z40 z20 z30 z40

z12 z30 z24 z40 z20 z30 z40
z14 z30 z34 z40 z24 z34 z40

z20 z34 z30 z40 z24 z30 z34 z40

zzz13 par zz13, zz10 zz30
1

zz10

1

zz20

1

zz30
Simplify

— General::spell1 : Possible spelling error: new
symbol name "zzz13" is similar to existing symbol "zz13".

z13 z20 z30 z24 z34 z40 z14 z34 z40 z24 z34 z40
z10 z24 z34 z30 z40 z20 z30 z40

z14 z30 z34 z40 z24 z34 z40
z20 z34 z30 z40 z24 z30 z34 z40

z20 z30 z24 z34 z40 z14 z34 z40 z24 z34 z40 z13
z24 z30 z34 z40 z14 z34 z40 z24 z30 z34 z40

z10 z24 z34 z30 z40 z20 z30 z40
z13 z24 z30 z40 z20 z30 z34 z40
z14 z30 z34 z40 z24 z34 z40

z20 z34 z30 z40 z24 z30 z34 z40

zzz23 par zz23, zz20 zz30
1

zz10

1

zz20

1

zz30
Simplify

— General::spell1 : Possible spelling error: new
symbol name "zzz23" is similar to existing symbol "zz23".

z23 z20 z30 z24 z34 z40 z14 z34 z40 z24 z34 z40
z10 z24 z34 z30 z40 z20 z30 z40

z14 z30 z34 z40 z24 z34 z40
z20 z34 z30 z40 z24 z30 z34 z40

z20 z30 z24 z34 z40 z14 z23 z34 z40 z24 z34 z40
z10 z24 z34 z23 z30 z40 z20 z30 z40

z14 z30 z34 z40 z24 z34 z40 z23 z30 z34 z40
z24 z30 z34 z40 z20 z34 z30 z40
z23 z30 z34 z40 z24 z30 z34 z40
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Replace node 3:

zzzz12 par zzz12, zzz13 zzz23
1

zzz13

1

zzz23
Simplify

— General::spell1 : Possible spelling error: new
symbol name "zzzz12" is similar to existing symbol "zzz12".

z12 z20 z23 z30 z24 z34 z40 z14 z34 z40 z24 z34 z40
z13 z24 z30 z34 z23 z30 z34 z40

z14 z30 z34 z40 z24 z34 z40
z23 z30 z34 z40 z24 z30 z34 z40

z10 z23 z24 z34 z30 z40 z20 z30 z40
z14 z30 z34 z40 z24 z34 z40

z20 z34 z30 z40 z24 z30 z34 z40
z13 z24 z30 z34 z23 z30 z34 z40

z20 z34 z30 z40 z23 z30 z34 z40
z14 z30 z34 z40 z24 z34 z40 z23 z30 z34 z40

z24 z30 z34 z40 z20 z34 z30 z40
z23 z30 z34 z40 z24 z30 z34 z40

z20 z23 z30 z24 z34 z40 z14 z34 z40 z24 z34 z40
z13 z24 z30 z34 z23 z30 z34 z40

z14 z30 z34 z40 z24 z34 z40
z23 z30 z34 z40 z24 z30 z34 z40

z12 z30 z23 z24 z20 z23 z24 z34 z40
z14 z23 z34 z40 z24 z34 z40

z20 z34 z40 z23 z34 z40 z24 z34 z40
z13 z24 z30 z34 z23 z30 z34 z20

z30 z34 z23 z30 z34 z24 z30 z34 z40
z14 z30 z34 z40 z24 z34 z40 z23 z30 z34

z40 z24 z30 z34 z40 z20 z34 z30 z40
z23 z30 z34 z40 z24 z30 z34 z40

z10 z23 z24 z34 z30 z40 z20 z30 z40
z14 z30 z34 z40 z24 z34 z40

z20 z34 z30 z40 z24 z30 z34 z40
z13 z24 z30 z34 z23 z30 z34 z40

z20 z34 z30 z40 z23 z30 z34 z40
z14 z30 z34 z40 z24 z34 z40 z23 z30 z34

z40 z24 z30 z34 z40 z20 z34 z30 z40
z23 z30 z34 z40 z24 z30 z34 z40

z12 z34 z24 z30 z40 z20 z23 z24 z30 z40
z23 z30 z40 z24 z30 z40

z13 z30 z34 z40 z24 z34 z40 z23 z30 z34
z40 z24 z30 z34 z40 z20 z34 z30 z40
z23 z30 z34 z40 z24 z30 z34 z40

z14 z30 z34 z40 z24 z34 z40 z23 z30 z34
z40 z24 z30 z34 z40 z20 z34 z30 z40
z23 z30 z34 z40 z24 z30 z34 z40
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After entering the capacity values for the impedances, we get C12  = C1 '  from (3) for the first differential line!

z10 1 129.28; z12 1 0.242; z13 1 0.0035; z14 1 0.0001;
z20 1 129.04; z23 1 0.242; z24 1 0.0035; z30 1 129.04;
z34 1 0.242; z40 1 129.28; 1 zzzz12

64.8842

To get C23 between nodes 2 and 3 the numbers 1 and 3 in the capacitors indices  swap places (cf. Fig. 8):

z10 1 129.04; z12 1 0.242; z13 1 0.0035; z14 1 0.242;
z20 1 129.04; z23 1 0.242; z24 1 0.0035; z30 1 129.28;
z34 1 0.0001; z40 1 129.28; 1 zzzz12

64.8845

Both  the  capacities  C24  between  nodes  2  and  4  (swap  numbers  1  and  4)  and   C13  between  nodes  1  and  3
(swap numbers 2 and 3) are identical :

z10 1 129.28; z12 1 0.0035; z13 1 0.242; z14 1 0.0001;
z20 1 129.04; z23 1 0.242; z24 1 0.242; z30 1 129.04;
z34 1 0.0035; z40 1 129.28; 1 zzzz12

64.7649

The capacity C14  between nodes 1 and 4 is (swap numbers 2 and 4):

z10 1 129.28; z12 1 0.0001; z13 1 0.0035; z14 1 0.242;
z20 1 129.28; z23 1 0.242; z24 1 0.0035; z30 1 129.04;
z34 1 0.242; z40 1 129.04; 1 zzzz12

64.7626

 Last  is C2 ' ,  the capacity  of the  second differential  line,   where 1  is  swapped for  4 and  2 for  3  (identical  to
C1 ' ) : 

z10 1 129.28; z12 1 0.242; z13 1 0.0035; z14 1 0.0001;
z20 1 129.04; z23 1 0.242; z24 1 0.0035; z30 1 129.04;
z34 1 0.242; z40 1 129.28; 1 zzzz12

64.8842

The remaining effective coupling that determines the crosstalk, evaluates then 
with (45) to C12 '  = 0.1173 [pF/m].
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Mathematica Code  (Coefficients of inductance of the pigtail)

RAM requirements: Front End 20 MB, Kernel 30 MB

Set v1 - v4 such that the resulting current in the loop integral below has the correct value (-1 or  0 or +1).

v1=0.196581;v2=-0.1947736;v3=0.1947728;v4=-0.196612;
nz=80; (* # of rows of the grid, divisible by 2 *)
ns=446; (* # of columns of the grid, divisible by 2 *)
{xr,yr}={91,12.5};(* center point for contour integral *)
u=.;m=.;m=Array[u,{nz,ns}];a=Array[u,{nz,ns}];
mb=Table[0,{nz},{ns}];
Do[Do[a[[i,j]]=u[[i,j]],{j,1,ns}],{i,1,nz}]
Do[Do[m[[i,j]]:=Evaluate[0.25(a[[i-1,j]]+a[[i,j-1]]+
a[[i+1,j]]+a[[i,j+1]])],
{j,2,ns-1}],{i,2,nz-1}]
Do[m[[1,j]]:=0.,{j,1,ns}]
Do[m[[nz,j]]:=0.,{j,1,ns}]
Do[m[[i,1]]:=0.,{i,1,nz}]
Do[m[[i,ns]]:=0.,{i,1,nz}]
xl1=80;xr1=102;yd1=11;yu1=14;
xl2=168;xr2=190;yd2=11;yu2=14;
xl3=256;xr3=278;yd3=11;yu3=14;
xl4=344;xr4=366;yd4=11;yu4=14;
Do[Do[{m[[i,j]]:=v1;mb[[i,j]]=1;},{j,xl1,xr1}],{i,yd1,yu1}]
Do[Do[{m[[i,j]]:=v2;mb[[i,j]]=1;},{j,xl2,xr2}],{i,yd2,yu2}]
Do[Do[{m[[i,j]]:=v3;mb[[i,j]]=1;},{j,xl3,xr3}],{i,yd3,yu3}]
Do[Do[{m[[i,j]]:=v4;mb[[i,j]]=1;},{j,xl4,xr4}],{i,yd4,yu4}]

nz1=nz/2;ns1=ns/2;u1=.;m1=.;
m1=Array[u1,{nz1,ns1}];a1=Array[u1,{nz1,ns1}];
Do[Do[a1[[i,j]]=u1[[i,j]],{j,1,ns1}],{i,1,nz1}]
Do[Do[
m1[[i,j]]:=Evaluate[0.25(a1[[i-1,j]]+a1[[i+1,j]]+a1[[i,j-1]]+
a1[[i,j+1]])],
{j,2,ns1-1}],{i,2,nz1-1}];
Do[m1[[1,j]]:=0.,{j,1,ns1}];
Do[m1[[nz1,j]]:=0.,{j,1,ns1}];
Do[m1[[i,1]]:=0.,{i,1,nz1}];
Do[m1[[i,ns1]]:=0.,{i,1,nz1}];
(* guess for coordinates:old/2;mb is used to identify 
location of conductors *)
Do[Do[If[mb[[2i,2j]]==1,m1[[i,j]]=m[[2i,2j]]],{i,nz1}],
{j,ns1}]
u1=Table[0.,{i,1,nz1},{j,1,ns1}];
Timing[Do[{u1=m1;
If[Mod[i,500]==0,
Print[i," residual error:",Max[Flatten[Abs[u1-m1]]]]]},
{i,1,2000}]]

— Part::partd : Part specification u1 1, 1 is longer than depth of object.

— General::stop :
Further output of Part::partd will be suppressed during this calculation.
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p ListInterpolation Transpose u1 , InterpolationOrder 1 ;
Plot3D p x, y , x, 1, ns1 , y, 1, nz1 , PlotRange All

Control plot of interpolated vector potential.

u=Table[p[j/2,i/2],{i,1,nz},{j,1,ns}];Timing[Do[{u=m;
If[Mod[i,100]==0,{err=Max[Abs[Flatten[u-m]]];Print[i,"  
residual error: ",err];If[err<10^-6,Break[]]}]},{i,1,7000}]]
ListPlot3D[u,ImageSize->400,ViewPoint->{1,-4.000,3}];

Vector potential of the pigtail, a current of strength 1 is flowing back and forth in both circuits.
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g Table u i, j 1 u i, j , u i 1, j u i, j ,
i, 1, nz 1 , j, 1, ns 1 ;

lrow Table u nz, j 1 u nz, j ,
u nz, j u nz 1, j , j, 1, ns 1 ;

g Append g, lrow ;
lcol Append Table u i, ns u i, ns 1 ,

u i 1, ns u i, ns , i, 1, nz 1 ,
u nz, ns u nz, ns 1 , u nz, ns u nz 1, ns ;

g Transpose Append Transpose g , lcol ;

0 4. 10 7;

The shape of the conductors now suggests an elliptic  contour to calculate the current. The elliptic path of the
line integral  has  to run completely  outside  of the  current.  Adjust  the half  axes a and  b accordingly;  for  high
accuracy  it is necessary to control all 4 currents precisely :

dphi 100;
xr, yr 91, 12.5 ;
center point for contour integral 1

i Table Sum dphi
g Round yr b Sin phi , Round xr a Cos phi , 2

a Sin phi g Round yr b Sin phi ,
Round xr a Cos phi , 1 b Cos phi ,

phi, 0, 2 , dphi , a, 13, 20 , b, 5, 10
iMean1 Apply Plus, Flatten i Length Flatten i

1.00863, 1.00161, 1.00454, 1.00039, 0.998661, 0.999783 ,
1.00281, 1.00465, 1.00212, 1.00047, 0.999056, 0.99995 ,
0.998864, 1.00062, 1.00015, 0.99813, 0.997783, 0.998637 ,
1.00116, 1.00143, 1.00126, 0.999359, 1.00027, 1.00031 ,
1.00394, 1.00344, 1.00205, 0.999937, 1.0006, 0.999843 ,
1.00242, 1.00103, 0.998707, 0.997314, 0.998403, 0.99755 ,
0.996741, 1.00119, 0.999394, 0.998253, 0.99902, 0.998298 ,
0.995873, 0.999232, 0.997195, 0.995986, 0.996848, 0.996145

1.

Pulse.nb 51



dphi 100;
xr, yr 179, 12.5 ;
center point for contour integral 2

i Table Sum dphi
g Round yr b Sin phi , Round xr a Cos phi , 2

a Sin phi g Round yr b Sin phi ,
Round xr a Cos phi , 1 b Cos phi ,

phi, 0, 2 , dphi , a, 13, 20 , b, 5, 10
iMean2 Apply Plus, Flatten i Length Flatten i

1.00867, 1.00161, 1.00454, 1.00035, 0.998615, 0.999734 ,
1.00283, 1.00465, 1.00213, 1.00046, 0.999033, 0.999927 ,
0.998885, 1.00063, 1.00015,
0.998121, 0.997766, 0.998623 ,
1.00116, 1.00144, 1.00126, 0.999349, 1.00025, 1.0003 ,
1.00395, 1.00345, 1.00206, 0.999929, 1.00059, 0.999831 ,
1.00243, 1.00104, 0.998716, 0.997309, 0.998397,
0.997544 , 0.996769, 1.00121, 0.999405,
0.998249, 0.999015, 0.998294 , 0.995898,
0.999252, 0.997209, 0.995986, 0.996848, 0.996147

1.

dphi 100;
xr, yr 267, 12.5 ;
center point for contour integral 3

i Table Sum dphi
g Round yr b Sin phi , Round xr a Cos phi , 2

a Sin phi g Round yr b Sin phi ,
Round xr a Cos phi , 1 b Cos phi ,

phi, 0, 2 , dphi , a, 13, 20 , b, 5, 10
iMean3 Apply Plus, Flatten i Length Flatten i

1.00867, 1.00161, 1.00454, 1.00035, 0.998616, 0.999736 ,
1.00283, 1.00465, 1.00213, 1.00046, 0.999034, 0.999928 ,
0.998884, 1.00062, 1.00015, 0.998121, 0.997767, 0.998624 ,
1.00116, 1.00144, 1.00126, 0.99935, 1.00025, 1.0003 ,
1.00395, 1.00345, 1.00206, 0.999929, 1.00059, 0.999832 ,
1.00243, 1.00104, 0.998716, 0.99731, 0.998398, 0.997545 ,
0.996768, 1.00121, 0.999405, 0.99825, 0.999015, 0.998295 ,
0.995897, 0.999252, 0.997209, 0.995987, 0.996849, 0.996148

1.
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dphi 100;
xr, yr 355, 12.5 ;
center point for contour integral 4

i Table Sum dphi
g Round yr b Sin phi , Round xr a Cos phi , 2

a Sin phi g Round yr b Sin phi ,
Round xr a Cos phi , 1 b Cos phi ,

phi, 0, 2 , dphi , a, 13, 20 , b, 5, 10
iMean4 Apply Plus, Flatten i Length Flatten i

1.0087, 1.00165, 1.00456, 1.00037, 0.998629, 0.999733 ,
1.00286, 1.00467, 1.00214, 1.00047, 0.99904, 0.99992 ,
0.99892, 1.00065, 1.00016, 0.998135, 0.997771, 0.998613 ,
1.0012, 1.00147, 1.00128, 0.999367, 1.00025, 1.00029 ,
1.00398, 1.00346, 1.00207, 0.999936, 1.00058, 0.999813 ,
1.00245, 1.00105, 0.998717, 0.997308, 0.99838, 0.997513 ,
0.996784, 1.00121, 0.999398, 0.998239,
0.998989, 0.998252 , 0.995908, 0.999245,
0.997191, 0.995964, 0.996808, 0.996088

1.

If all currents have their required values, then the inductance is:

ind 0 Sum g i, j .g i, j , i, 1, nz , j, 1, ns

9.82397 10 7

Results for the external inductances from the three pairs of currents {1,0},{0,1},and {1,1}:
L1 '     = 0.493248  [ H/m]  (v1 = 0.196541,  v2 = - 0.196598,   v3 = - 0.0018,       v4 = - 0.00004)
L2 '     = 0.493260  [ H/m]  (v1 = 0.000039,  v2 =   0.001824,   v3 =   0.196572,    v4 = - 0.196572)
LL12 '= 0.982397  [ H/m]  (v1 = 0.196581,  v2 = - 0.1947736, v3 =   0.1947728,  v4 = - 0.196612)

The internal inductance amounts to 0

8 = 5 10 8  [H/m] per conductor (Ref. 7, p.320) and the complete result
is:
L1 ' = 0.593248  [ H/m], L2 '  = 0.593260  [ H/m], LL12 '= 1.182397  [ H/m]

With (37) there is then the mutual inductance that is responsible for the crosstalk:

L12 '= - 3.34  [nH/m].

The negative  sign  can  be understood  from the  following  argument:  conductor  1  generates  with current  +1 a
certain  amount  of  flux  between  conductors  3  and  4.  The  flux  originating  from  conductor  2  with  current  in
opposite  direction  is  closer  to  the  region  between  conductor  3  and  4  and  has  therefore  (because  it  depends
logarithmically on the distance) in this place a bigger impact, so that the addition of these two fluxes will give
a negative number.

The  obtained  values  for  the  capacities  and  inductances  will  now  be  used  in  the  following  code  to
calculate the propagating pulse.
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Mathematica Code  (Animation of Double Pulse including Crosstalk)

RAM requirements: Front End 60 MB, Kernel 20 MB

npl 300; number of plots

dt 1. 10 12; 1 psec
dx 0.004; 4 mm

dx
dt

speed of propagation for stability,

trade off with computational speed
m 250; array dimension space distance m dx 1 m
nmax 50000; time considered: nmax dt
pl Round nmax npl ;

snapshot after every pl timesteps
k 2; number of circuits

define input pulse

rise Round 1. 10 9 dt ;

width Round 10.5 10 9 dt ;

fall Round 1. 10 9 dt ;

emp Round 12.5 10 9 dt ;
len rise width fall emp rise width fall;
uin Table 1. j rise, j, 1, rise ;
uin Append uin, Table 1., j, 1, width ;
uin Append uin, Table 1. j fall, j, 1, fall ;
uin Append uin, Table 0., j, 1, emp ;
uin Append uin, Table 1. j rise, j, 1, rise ;
uin Append uin, Table 1., j, 1, width ;
uin Append uin, Table 1. j fall, j, 1, fall ;
uin Append uin, Table 0., j, 1, nmax len ;
uin Flatten uin ;

Parameters per Unit Length:

res 8.; resistance in per meter

rm
res 0

0 res
;

capacitance in F per meter

cm
65. 0.117

0.117 65.
10 12; now incl crosstalk

ci Inverse cm ;
inductance in H per meter

lm
0.59325 0.00334

0.00334 0.59326
10 6; now incl crosstalk

li Inverse lm ;
zl 220; Termination left
zr 220; Termination right
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Initialization and Setup of Coefficient Matrices:

id IdentityMatrix k ;
u1 u0 Table 0., m , k ; i1 i0 Table 0., m , k ;

m1 id
dt

dx

2

ci.li ; m2
1

2

dt

dx

2

ci.li ; m3
1

2

dt

dx
ci;

m4 id dt li.rm . id
dt

dx

2

li.ci ;

m5
1

2

dt

dx

2

id dt li.rm . li.ci ;

m6
1

2

dt

dx
id dt li.rm .li;

m8 Inverse id
dt

dx

2

ci.li . id
dt

dx

2

ci.li ;

m9 2
dt

dx
Inverse id

dt

dx

2

ci.li .ci;

m10 id dt li.rm;

m11 2
dt

dx
id dt li.rm . Inverse id

dt

dx

2

li.ci .li ;

m12

id dt li.rm .Inverse id
dt

dx

2

li.ci . id
dt

dx

2

li.ci ;

output main and 2 adjacent wires
uout 0, 0 ; uout1 0, 0 ; uout2 0, 0 ;

Static Initial Condition:

ListPlot uin, PlotJoined True,

AxesLabel "10 12sec", "Ampl" ;

Input Pulse on the left side of the pigtail,two pulses of 12.5 nsec length and 12.5 nsec separation.

Pulse.nb 55



Calculate evolution in time and produce animation of the propagating pulses:

Timing
Do

main loop, calculate line n 1 in u and i grid
Do jp1 j 1; jm1 j 1;
u1 j m1.u0 j

m2. u0 jp1 u0 jm1 m3. i0 jp1 i0 jm1 ;
i1 j m4.i0 j m5. i0 jp1 i0 jm1

m6. u0 jp1 u0 jm1 , j, 2, m 1 ;
edges

u1 m u0 m 1
m8. u0 m u1 m 1 m9. i0 m i1 m 1 ;

i1 m m10.i0 m 1 m11. u0 m u1 m 1
m12. i0 m i1 m 1 ;

u1 1 u0 2 m8. u0 1 u1 2
m9. i0 1 i1 2 ;

i1 1 m10.i0 2 m11. u0 1 u1 2
m12. i0 1 i1 2 ;
static boundary conditions open: set i 0,

short: set u 0
u1 m zr i1 m ; termination right with z
u1 1 zl i1 1 ; termination left with z
u1 1, 1 uin n ;

build output
uout Append uout, u1 m, 1 ;

seen on diff line 1 after 1 m
uout1 Append uout1, u1 m, 2 ;

crosstalk on diff line 2 after 1 m
uout2 Append uout2, Max Transpose u1 2 ;

max ampl of crosstalk
u0 u1; i0 i1; advance one step in time

do a snapshot of the voltages
If Mod n, pl 0,

plot voltage wire 1
p1 ListPlot Transpose u1 1 ,

PlotRange 0, m , 0.6, 1.7 ,
PlotJoined True, DisplayFunction Identity ;
plot current wire 1

p2 ListPlot Transpose i1 1 ,
PlotRange 0, m , 0.015, 0.015 ,
PlotJoined True, DisplayFunction Identity ;
plot voltage wire 2

p3 ListPlot Transpose u1 2 ,
PlotRange 0, m , 0.039, 0.039 ,
PlotJoined True, DisplayFunction Identity ;

Show GraphicsArray p1 , p2 , p3 ,
DisplayFunction $DisplayFunction ;
get rid of small numbers to
accelerate calculation

u0 Chop u0 ; i0 Chop i0 ; Print n , n, nmax

Print "Fertig "
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This shows the voltage between line 1 and 2, sampled at the right end of the pigtail (1m), as it would appear
on a scope – leading edge is to the left – :

ListPlot uout, AxesLabel "time ps ", "Ampl"

Graphics

Below is  shown  the  corresponding  crosstalk  on   lines  3  and  4,  sampled  at  the  right  end  of  the  pigtail,  as  it
would appear on a scope:

ListPlot uout1, PlotRange All,
AxesLabel "time ps ", "Crosstalk"

Graphics

In both 'scope'  pictures above the displayed  pulses  already contain a reflected part from the right end, where
they are sampled.  This  is  why – you  see it  clearly  in  the animation  –  the second  pulse  in the  first  picture  is
larger and has a lower baseline.
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In the next plot we see the amplitude of the crosstalk signal as function of time during its motion from
left to right  – it  is shown before it has  reached the right  end and  is therefore not yet disturbed by reflection,
because the simulated wires in this special  run were more than 12 m long – as it rises from zero to its steady
state value (horizontal unit is 1 ps):

Why might the crosstalk be increasing ? For an explanation look at Fig. 9 (Ref. 11, p. 206) :

Figure 9

  

Figure 9.  Accumulation of far end crosstalk

At each instant in time some portion of the main pulse is coupled to the adjacent wire, where it starts propagat-
ing to both ends. As the main pulse has one direction (here: to the right) and travels with the same speed as the
crosstalk portions, everything that goes to the far end arrives at the same time, while the parts going to the left
are distributed  in  time and  see the  near  end  only one  after  the other.  This  process continues  until  a  likewise
growing part of the crosstalk starts flowing back to the main wire and an equilibrium is reached.
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Next shown  is the shape of the pulse after having travelled on line 1 for about 12m 
(horizontal unit is 4mm, leading edge is to the right):

and below the corresponding crosstalk on line 2, it has grown quite a bit :
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One can do many more interesting experiments with this notebook. Let's look as a last thing for now at u/i on
line 1 as function of position along the wire. The following plot displays voltage/current after the first reflec-
tion of the pulse at the right end. Before reflection we have u0 i0 Z0 0.6 65 *1000  = 96 .  The line
is terminated with Zx  = 220 . After reflection there  is a superposition  of the original pulse with the return-
ing component: u = u0 *(1+ (Zx -Z0 )/ (Zx +Z0 )),  i = i0 *(1- (Zx -Z0 )/ (Zx +Z0 )), so that u/i = Zx .

Graphics

Conclusion

Tools  have  been  presented  that  allow the  detailed  analysis  of  crosstalk  on coupled  linear  conductors
within  the  time  domain.  They  also  let  you  determine  the  capacities  and  inductances  of  linear  conductors  of
arbitrary shape. All you have to do is to adapt the contour and the height of the potential boundaries  and run
the  code  example.  The  resulting  values  may  be  entered  into  the  corresponding  matrices  of  the  telegraph
equations to simulate and watch pulse propagation.

A simple formula was derived that lets you calculate the exact potential of a line charge in a rectangu-
lar box and hence the capacity of a wire inside a rectangular shield.

Crosstalk is a dynamic phenomenon. Although the coupling – capacitive and inductive – of the pigtail
is  surprisingly  small,  the  amplitude  of  the  crosstalk  pulse  grows  considerably  until  it  gets  to  an  asymptotic
value:  In  this  case  it  reaches  2-3% after  1  m length  and  attains  its  equilibrium  amplitude  of  well  over  18%
(even 30% if related to the damped pulse on line 1) after running about 13 m or 80 necs. 

The ratio voltage/current  is determined first  by the impedance Z0 ,  after the pulse has suffered  reflec-
tion at the end of the conductor, the ratio changes to Zx , the value of the terminating resistor.
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