C) Turbulent flow of real liquids

Criterion for transition to laminary to turbulent current

Current of ideal liquids: Inertia force ~ $\rho \cdot v^2$

viscous : forces of friction $\sim \eta \cdot v \cdot d$

d: typical distance

Following forces are considered:

$$d\vec{F}_R = \eta \cdot \Delta \vec{u} \cdot dV \qquad d\vec{F}_P = -grad \ P \cdot dV \qquad d\vec{F}_g = \rho \cdot \vec{g} \cdot dV$$

Friction Force due to pressure Gravity

Those forces spark accelerations: $u \Rightarrow \vec{u} + d\vec{u}$

The total change of velocity u in which element of mass in time dt from r-> r+ dr proceeds

For the x- component:

$$\frac{du_x}{dt} = \frac{\partial u_x}{\partial t} + \frac{\partial u_x}{\partial x} \frac{\partial x}{\partial t} + \frac{\partial u_x}{\partial y} \frac{\partial y}{\partial t} + \frac{\partial u_x}{\partial z} \frac{\partial z}{\partial t}$$

 $\frac{\partial u_x}{\partial t}$: Change on same place

$$\frac{\partial u_x}{\partial x} \frac{\partial x}{\partial t} + \frac{\partial u_x}{\partial y} \frac{\partial y}{\partial t} + \frac{\partial u_x}{\partial z} \frac{\partial z}{\partial t}$$
: Acceleration due to convection

Generally:
$$\frac{d\vec{u}}{dt} = \frac{\partial \vec{u}}{\partial t} + (\vec{u} \cdot \vec{\nabla})\vec{u} \Rightarrow \rho(\frac{\partial}{\partial t} + (\vec{u} \cdot \vec{\nabla}))\vec{u} = -grad \ P + \rho \cdot \vec{g} + \eta \cdot \Delta \vec{u}$$

Using the vector correletion:

$$(\vec{u} \cdot \vec{\nabla})\vec{u} = \frac{1}{2}grad\ u^2 - (\vec{u} \times rot u)$$

On bothe sides rot

With
$$\eta = 0$$
 (ideal liquid)

Due to rot(grad P)=0 and rot grad $u^2 = 0$ $\frac{\partial}{\partial t} rot \vec{u} - rot (\vec{u} \times rot \vec{u}) = 0$

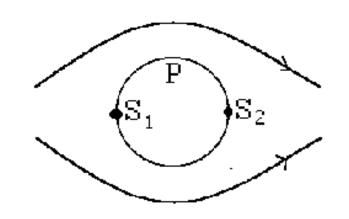
Beeing: rot u = 0 at time t

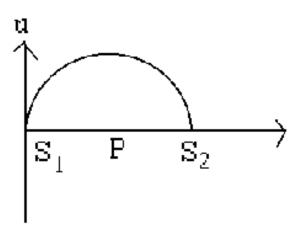
$$\Rightarrow \frac{\partial}{\partial t} rot \vec{u} = 0 \Rightarrow$$

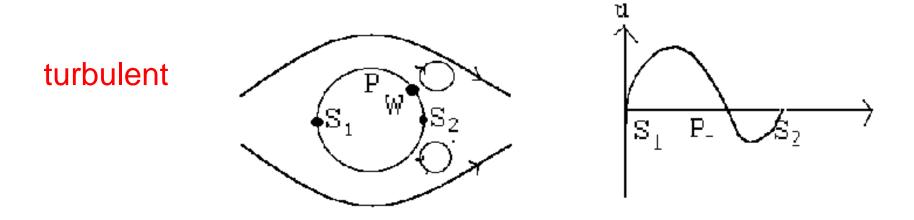
If an ideal liquid without turbulence is set in motion, no to turbulence occurs.

Force of turbulence

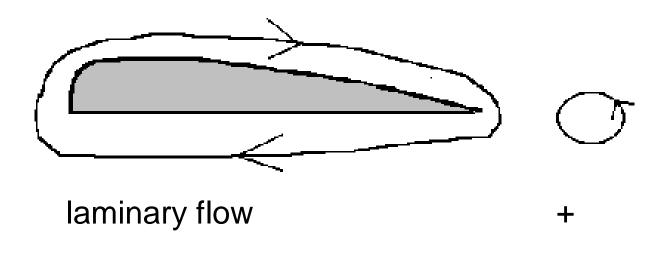
Force of turbulence stays constant constant in time


 \Rightarrow


Friction is relevant at creation of turbulence.


large "shear force"

Example: Circulation around a ball


The velocity is reached already at W, which is reached in case of a laminary velocity at S_2 ! \Rightarrow turbulence

The energy comes from kinetic energy of the flowing medium.

Once again wings!

Vortex ⇒ Conservation of angular momentum

⇒ lift