
Comments to setups Rules of Kirchhoff :

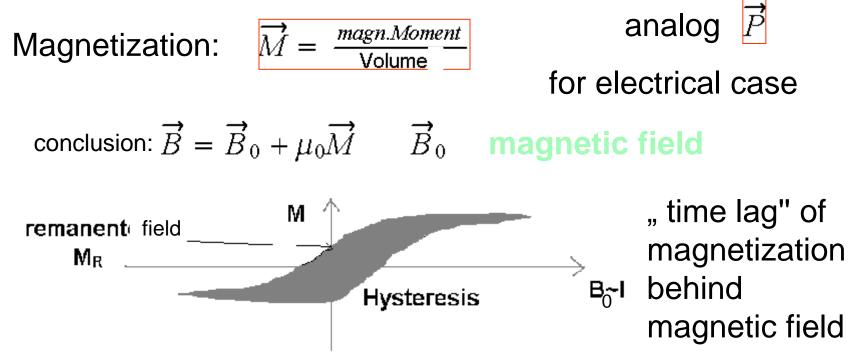
1: Node rule:
$$\sum_i \mathbf{I}_i = 0$$

Charge conservation

Independence of path of potential difference

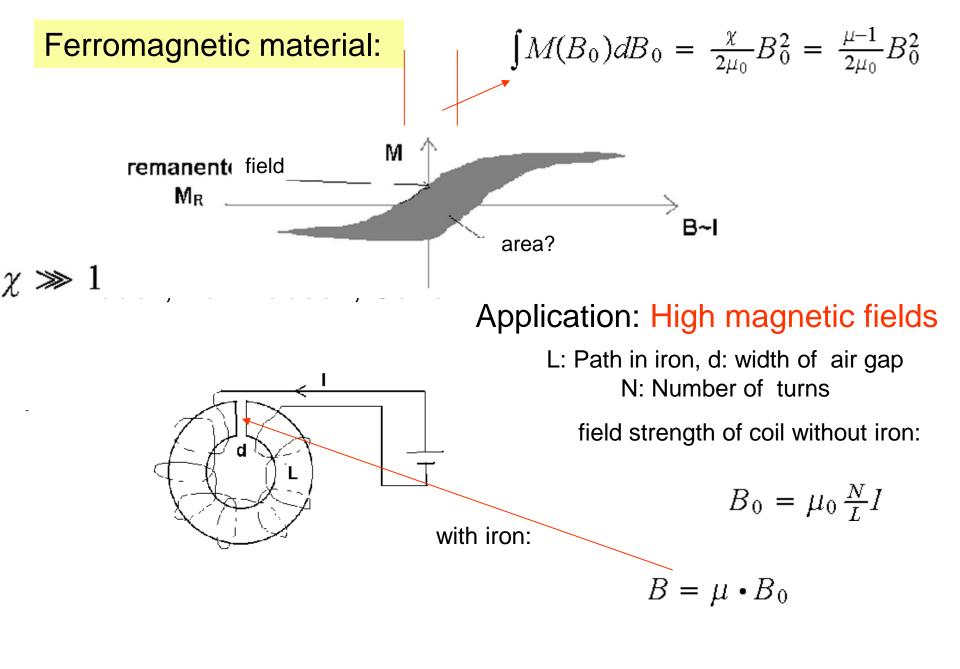
Application: Measurement device

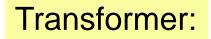
 \mathbf{R}_{1}

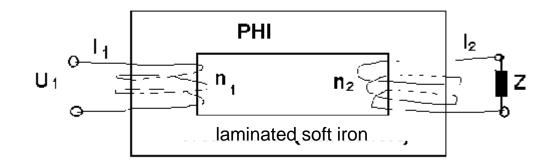

e.g.: measurement of current

Increase of measurement range

$$\frac{R_s}{R_i} = \frac{\frac{1}{10}}{\frac{9}{10}} \Longrightarrow R_s = \frac{1}{9}R_i$$

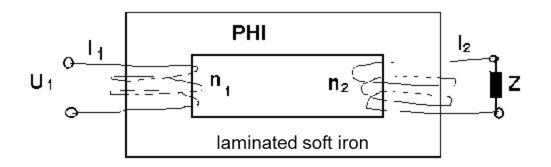





 M_R ',large'': magnetic hard $\rightarrow permanent magnet$

 M_R ',small'': magnetic soft \rightarrow Trafo Relative permeability: $\vec{B} = \vec{B}_0 + \mu_0 \vec{M}$ conclusions: $\mu_0 \vec{M} = \chi \vec{B}_0 \quad \chi$: Susceptibility and thus: $\vec{B} = \vec{B}_0 (1 + \chi)$

 $1 + \chi = \mu$: degree orientation


- Primary & secondary winding Ideal Transformer
- a) Ohmic resistance
 negligible
 (coils& supply lines)

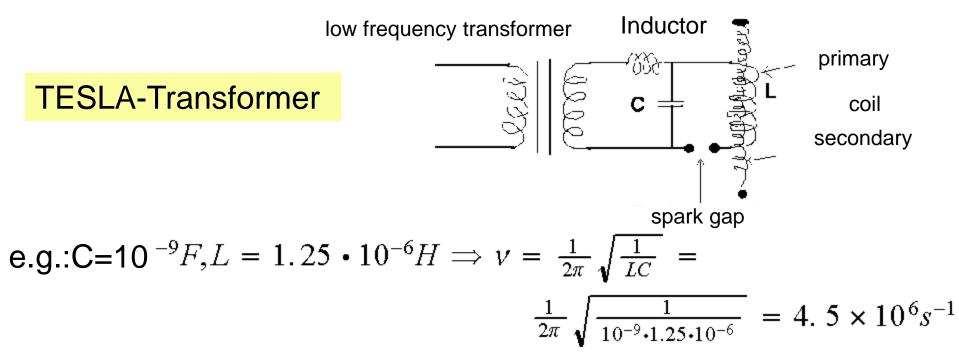
b) No , hysteresis

c) Φ in iron concentrated

$$U_1 = -U_{ind}, U_1 = n_1 \cdot \Phi$$
 secundary circuit: Φ produces $U_2 = -n_2 \cdot \Phi$
 \rightarrow Voltage transfer factor of transformer: $\frac{U_2}{U_1} = -\frac{n_2}{n_1}$
Special case : $I_2 = 0$ primary circuit: Open circuit voltage $I_{1,0} = \frac{U_1}{i\omega L_1}$

pure idle current

in secondary circuit: $Z = R + i\omega L; I_2 = \frac{U_2}{Z}$

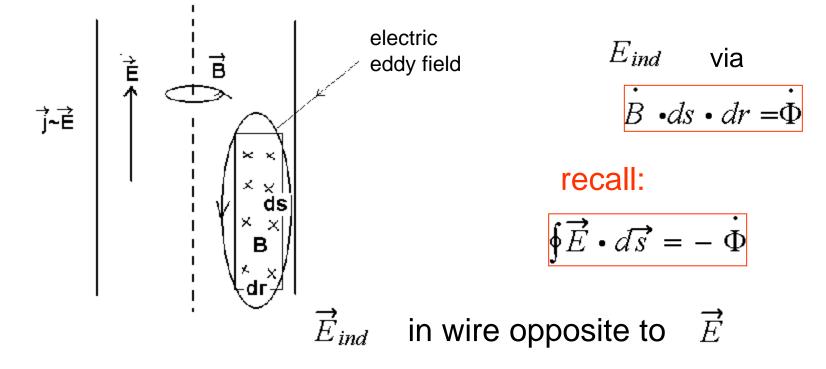

Z

 Φ compensates U_1 , no extra change of Φ

 $n_2 \cdot I_2$ has to be compensated by I'_1

$$n_{1} \cdot I_{1}' + n_{2} \cdot I_{2} = 0 \implies \frac{I_{2}}{I_{1}'} = -\frac{n_{1}}{n_{2}} \text{ primary current:}$$

$$I_{1} = I_{1,0} - \frac{n_{2}}{n_{1}}I_{2} = I_{1,0} - \frac{n_{2}}{n_{1}}\frac{U_{2}}{Z}$$
no load
$$u_{1} \qquad u_{1} \qquad u_{2} \qquad u_{2} \qquad u_{1} \qquad u_{1$$


Damping due to resistance of coil and spark gap

```
very high voltages : a few 10^5 V
```

High rate of change of magnetic flux

Skin effect! Observation: High frequency

Current urges towards surface

penetration depth for 100 Hz ca. few cm

for $10^{12}Hz$ ca. 0.1 μm

Other effects of matter in magnetic fields

On atomic level one has atomic magnetic moments:

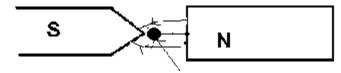
angular momentum : $L = m \cdot v \cdot r$

Magnetic moment $m_m = I \cdot A = I \cdot \pi \cdot r^2$

Charge on orbit :
$$I = q \cdot v = \frac{q}{T} = \frac{q \cdot v}{2\pi r}$$
 With $T = \frac{2\pi r}{v}$

magnetic moment

Paramagnetism:


$$m_m = I \cdot A = I \cdot \pi \cdot r^2 = \frac{q \cdot v}{2\pi r} \cdot \pi \cdot r^2 = \frac{1}{2}q \cdot v \cdot r$$

$$\chi > 0 \quad \text{e.g.: Al}$$

magnetic dipole in a

inhomogene magnetic field:

force !

Orientation of elementary magnets $\overrightarrow{m}_m \cdot \overrightarrow{\frac{B}{k \cdot T}} = \frac{\text{potential energy of dipoles a magnetic field}}{\text{thermal agitation}}$

pellet of matter gets pulled towards tip

In case of a magn. dipole:

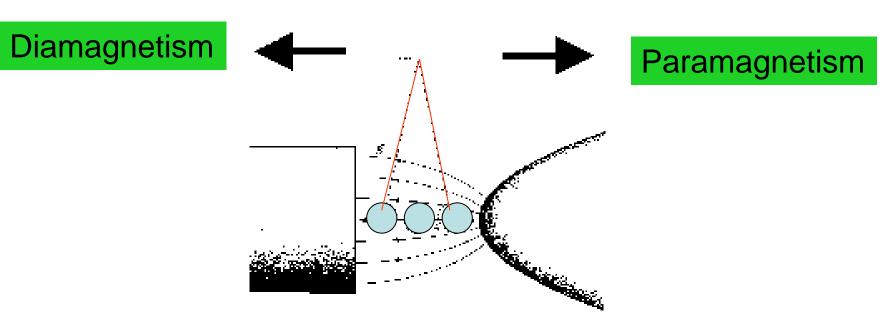
field gets stronger

with Pb, Bi and C one observes repulsion coming from tip!

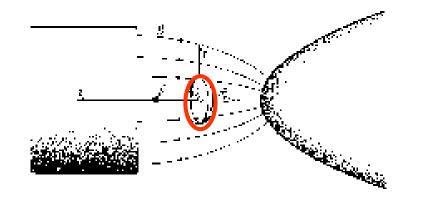
All these elements do not have a permanent dipole momemt !

i.e.: $\chi \prec 0$ or the field gets weaker!

Diamagnetism


Cause (classical):

By bringing in matter the B-field induces "additional" loop currents, that means additional magnetic moments in atoms.


According to the rule of Lenz: Attenuation

All matter show diamagnetism!

A few show in addition, but dominating, paramagnetism respectively, ferromagnetism

circuit currents by having diamagnetism

See Feynman Vol.II

"Now we would like to demonstrate that according to classical mechanics there can be no diamagnetism or paramagnetism at all" !!!!!