10.6. Energy density of an electromagnetic wave and the Poynting - Vector

z

Energy density w:
$$w = \frac{\varepsilon_0}{2}E_y^2 + \frac{1}{2\mu_0}B_z^2$$

 $w = \varepsilon_0 \cdot E_y^2$

х

$$B_z^2 = \varepsilon_0 \cdot \mu_0 \cdot E_y^2$$

Energy current density:

 $|\vec{E} \times \vec{B}| = \frac{E_{y}^{2}}{c}$

 $\vec{S} = \frac{1}{U_0} \vec{E} \times \vec{B}$ Poyntingvektor

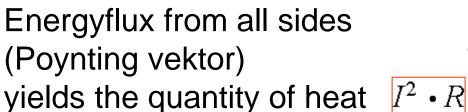
 $S = w \cdot c$,

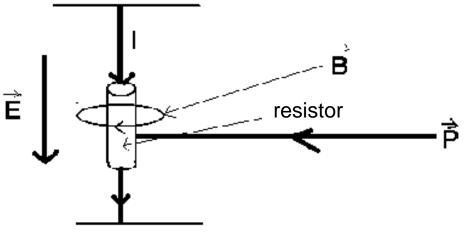
pro unity of time and unity of area perpendicular crossing energy (intensity)

point towards propagation direction

e.g.: resistor

 $\vec{S} \Rightarrow$





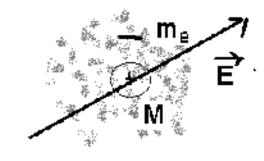
10.7. Electromagnetic waves in a dielectric

refraction indexVacuum + charges of plarisation
+ Ampère circle currents \rightarrow MaterieHere only: $\vec{P} = \chi \cdot \varepsilon_0 \cdot \vec{E} = \varepsilon_0 \cdot (\varepsilon - 1) \cdot \vec{E}$ $\varepsilon_0 \varepsilon \cdot \vec{E} = \varepsilon_0 \cdot \vec{E} + \vec{P}$ $\int_A (\vec{E} + \frac{\vec{P}}{\varepsilon_0}) \cdot d\vec{A} = \int_A \varepsilon \cdot \vec{E} \cdot d\vec{A} = 0$

In addition:
$$\int_{A} \vec{B} \cdot d\vec{A} = 0$$
 dazu : $\oint \vec{E} \cdot d\vec{s} = -\frac{d}{dt} \int_{A} \vec{B} \cdot d\vec{A}$
but $\oint \vec{B} \cdot d\vec{s} = \mu_0 \int_{A} \varepsilon_0 \frac{\partial}{\partial t} (\vec{E} + \frac{\vec{p}}{\varepsilon_0}) \cdot d\vec{A}$ Remains unchanged
 $= \mu_0 \cdot \varepsilon_0 \cdot \varepsilon \frac{d}{dt} \int \vec{E} \cdot d\vec{A}$
Formal: ε_0 Gets replaced by $\varepsilon_0 \cdot \varepsilon$ also $\mu_0 \to \mu \cdot \mu_0$
e.g: for $\frac{\vec{E}}{B} = \frac{1}{\sqrt{\varepsilon \cdot \mu \cdot \varepsilon_0 \cdot \mu_0}} = \frac{c}{\sqrt{\varepsilon \cdot \mu}} = v; \varepsilon \gtrsim 1, \mu \ge 1$
 $\sqrt{\varepsilon} = n$ index of refraction $\mu = 1$
Optics

Be reminded!

Polarisation of atoms in electric alternating fields:

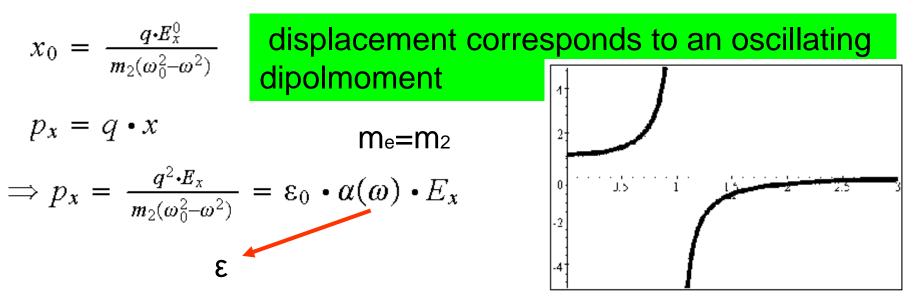


 \vec{E} : outside field, masses M, m_e with M >>m_e

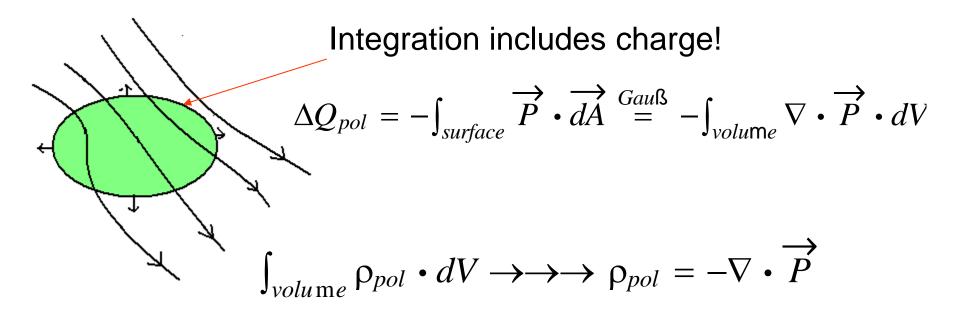
Force brings electron out of $F = q \cdot E$ balance

 $m_e \frac{d^2x}{dt^2} + m_e \cdot \omega_0^2 \cdot x = q \cdot E_x^0 \cdot \cos \omega t$ Solution with $x = x_0 * \cos \omega t$

$$\omega^2 \cdot m_e \cdot x_0 \cdot \cos \omega t + m_e \cdot \omega_0^2 \cdot x_0 \cdot \cos \omega t = q \cdot E_x^0 \cdot \cos \omega t$$



Modifications of Maxwell - equations in matter by electric polarisation



$$\underbrace{\rho_0}_{\text{pol}} + \rho_{pol} = \rho \quad \nabla \vec{E} = \frac{\rho_0 + \rho}{\varepsilon_0} = \frac{\rho_0}{\varepsilon_0} - \frac{1}{\varepsilon_0} \nabla \vec{P}$$
charges
$$\nabla \left(\varepsilon_0 \vec{E} + \vec{P} \right) = \rho_0$$

$$\vec{D}$$

 \vec{P} changes with time

 $\rightarrow \rightarrow \rightarrow$

charges change with time ·→→ current $j = N \cdot q_e \cdot v$ $= \frac{dx}{dt} \rightarrow j_{pol} = \frac{dP}{dt}$ $\rightarrow \rightarrow \rightarrow j = j_0 + j_{pol}$ $c^2 \nabla \times \vec{B} = \frac{\vec{j_0}}{\vec{s_0}} + \frac{\vec{j_{pol}}}{\vec{s_0}} + \vec{E}$ $\varepsilon_0 \cdot c^2 \nabla \times \vec{B} = \vec{j_0} + \frac{\partial}{\partial t} \left(\varepsilon_0 \vec{E} + \vec{P} \right) \qquad \nabla \times \vec{B} = \mu_0 \cdot \vec{j_0} + \mu_0 \cdot \frac{\partial}{\partial t} \vec{D}$ ಗ $\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$ and $\nabla \cdot \vec{B} = 0$ stand!

What happens with magnetic matter?

Does one want to have on the left side of Maxwell equation fields and on the right side currents, \vec{H} gets introduced.

$$\vec{H} = \vec{B} - \mu_0 \cdot \vec{M}$$

magnetisation

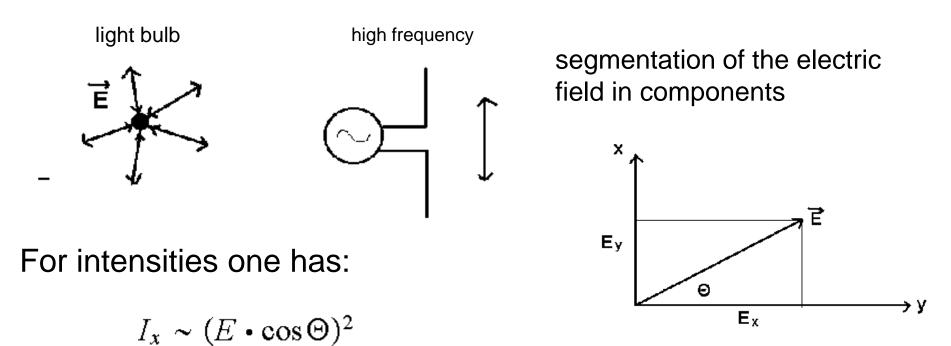
 $\vec{B} = \vec{B_0} + \mu_0 \cdot \vec{M}$

$$\nabla \times \vec{H} = \mu_0 \cdot \vec{j_0} + \mu_0 \cdot \frac{\partial}{\partial t} \vec{D}$$

10.8. Polarisation

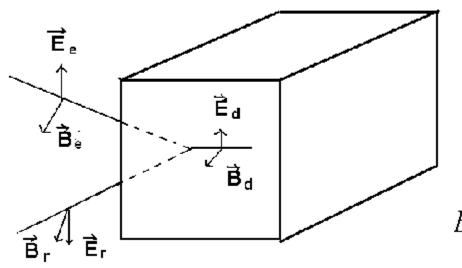
 $I_v \sim (E \cdot \sin \Theta)^2$

Polarisation of elektromagnetic wave is defined as the plane, which is spanned by the direction of the field \vec{E} and the direction of propagation!



10.9. Reflexion of a wave on a surface of an insulator

Example glass: almost perpendicular inclination Reflexion, traversing beam



$$\frac{E}{B} = c$$
 in vacuum and

$$\frac{c}{n}$$
 in glass

Boundaries: equality of tangential field strength!

$$B_d = B_e + B_r \quad E_d = E_e - E_r$$

Reflexion coefficient: $R = \frac{E_r}{E_e}$ mit $\frac{E}{B} = \frac{c}{n}$ $E = \frac{c}{n}B, B = \frac{n}{c}E \implies \frac{E_e}{c} + \frac{E_r}{c} = \frac{n}{c}E_d = \frac{n}{c}(E_e - E_r); *$ $E_e - n \cdot E_e = -E_r - n \cdot E_r$

$$\Rightarrow R = \frac{E_r}{E_e} = \frac{n-1}{n+1}$$

respectively: transmission factor D:

 $D = \frac{E_d}{E_e}$

$$D = \frac{E_d}{E_e} = \frac{2}{n+1} = 1 - R$$

reflectance $r = R^2$;transmission $d = D^2$ For intensities

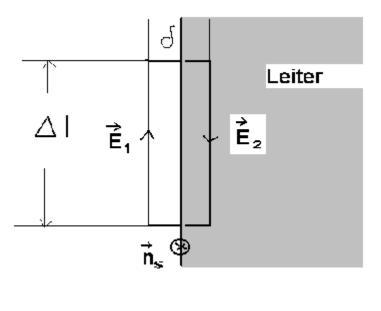
$$R^{2} = \left(\frac{n-1}{n+1}\right)^{2} = \frac{n^{2}-2n+1}{n^{2}+2n+1} \quad D^{2} = \frac{4}{n^{2}+2n+1} \Longrightarrow$$

glass with n=1.5 : $R^2 = \frac{.5^2}{2.5^2} = .04$ At a perpenticular incidence

In general: Fresnel's formulae of optics

10.10 Randbedingungen

Vakuum →perfekter Leiter



da $\vec{B} \cdot \vec{n}_s$ endlich!

Perfekter Leiter:

$$\sigma \to \infty \Longrightarrow \vec{E} = 0$$

Zeitabhängigkeit von B: $B \sim e^{i\omega t}$ $\oint \vec{E} \cdot d\vec{s} = -i\omega \int \vec{B} \cdot \vec{n}_s \cdot dA$ $\Lambda 1 \cdot \delta$ für $\delta \to 0 \Longrightarrow (\underline{E_1 - E_2}) \cdot \Delta l = 0$ = 0(perfekter Leiter)

Die Tangentialkomponente des elektrischen Feldes verschwindet an der Oberfläche eines perfekten Leiters Totale Reflexion der Welle How does it look with \vec{B} ? $\vec{B} = 0$ in conductor, because of $\vec{E}_2 = 0$

$$\oint \vec{E} \cdot d\vec{s} = -i\omega \int \vec{B} \cdot \vec{n}_s \cdot dA \quad \text{with}$$

$$\oint \vec{B} \cdot d\vec{s} = \int \sigma \cdot \vec{E} \cdot \vec{n}_s \cdot dA \quad (B_1 - B_2) \cdot \Delta l = \sigma \cdot E \cdot \underline{dA}$$

$$\Delta l \cdot \delta$$

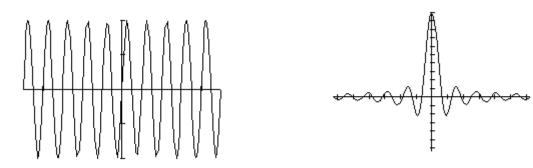
on the boundary \rightarrow surface current because $B_1 \neq 0$

Group velocity:

Special solution of the wave equation: $u(x,t) = Ae^{ikx-i\omega t} + Be^{-ikx-i\omega t}, k = \frac{2\pi}{\lambda}, \omega = \frac{2\pi}{T}$ Linear superposition! $u(x,t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} A(k)e^{ikx-i\omega(k)t} dk$ special for t=0 $A(k) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} u(x,0)e^{-ikx} dx$ $u(x,0) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} A(k) \cdot e^{ikx} \cdot dk$ it is necessary $\Delta x \cdot \Delta k \ge \frac{1}{2}$

With that velocity,

final wave train:



$$\Delta x \cdot \Delta k \ge \frac{1}{2}$$

$$(\Delta x \cdot \Delta k \ge \frac{1}{2})$$

$$(\Delta x \cdot \Delta k \ge \frac{1}{2}$$

$$(\Delta x \cdot \Delta k \ge \frac{1}{2})$$

$$(\Delta x \cdot \Delta k \ge \frac{1}{2}$$

$$(\Delta x \cdot \Delta k \ge \frac{1}{2})$$

$$(\Delta x \cdot \Delta k \ge \frac{1}{2}$$

$$(\Delta x \cdot \Delta k \ge \frac{1}{2})$$

$$(\Delta x \cdot \Delta k \ge \frac{1}{2}$$

$$(\Delta x \cdot \Delta k \ge \frac{1}{2})$$

$$(\Delta x \cdot \Delta k \ge \frac{1}{2}$$

$$(\Delta x \cdot \Delta k \ge \frac{1}{2})$$

$$(\Delta x \cdot \Delta k \ge \frac{1}{2}$$

$$(\Delta x \cdot \Delta k \ge \frac{1}{2})$$

$$(\Delta x \cdot \Delta k \ge$$