Decomposition of the force into components

Example: Inclined plane

Underlay compensates

$$
\vec{F}_{\perp}=m \cdot g \cdot \cos \vartheta
$$

For several forces \vec{F}_{i} the resulting force

$$
\vec{F}=\sum_{i=1}^{N} \vec{F}_{i}
$$

Is called equilibrium

Force as origin of movement

Example:Elastic pendulum

Equilibrium: Δl Displacements: $x\left(t_{1}\right), x\left(t_{2}\right)$

Additional displacement results in a additional force \vec{F}

$$
\vec{F}=-D \vec{x} ;[F]=N(\text { Newton })
$$

Using the second law of Newton:
$m \cdot \vec{a}=-D \cdot \vec{x}$
a:Resulting acceleration, m resistance against acceleration

$$
m \cdot \ddot{x}=-D \cdot x
$$

Look for $\mathrm{x}=\mathrm{x}(\mathrm{t})$

Result via Ansatz: $x=x_{0} \cos \omega t$ $\omega=$ constant $[\omega]=s^{-1}$

Derivation $\mathrm{t}: \dot{x}=-\omega x_{0} \sin \omega t$

$$
\ddot{x}=-\omega^{2} x_{0} \cos \omega t
$$

$$
\rightarrow-m \cdot \omega^{2} \cdot x_{0} \cdot \cos \omega t=-x_{0} \cdot D \cdot \cos \omega t
$$

$$
\omega^{2}=\frac{D}{m} \rightarrow \rightarrow \rightarrow \omega=\sqrt{\frac{D}{m}}
$$

Oscillation
Frequency: v
Period: $\omega=2 \pi \cdot v$

T : Time of the period
$\omega=2 \pi \nu=\frac{2 \pi}{T}=\frac{\text { angle of the full circle }}{\text { running time of the circumference }}$

$$
T=\frac{2 \pi}{\omega}=2 \pi \sqrt{\frac{m}{D}}
$$

Consequence: Starting with the assumption of a linear force yields a harmonic oscillation.
T independent of the amplitude.

1.3 Work and Power

$$
\begin{aligned}
\text { work } & =\text { force } \cdot \text { distance } \\
w & =\vec{F} \cdot \vec{s}
\end{aligned}
$$

Scalar $(\mathrm{W})=$ Joule $=$

$$
\mathrm{N} \cdot \mathrm{~m}=\mathrm{W} \cdot \mathrm{~s}
$$

Connection with
Electrodynamics:
Watt * second

Work against gravity

Scalar product of two vectors:

Here work
done on a
distance S

$d W=\vec{F}(\vec{s}) d \vec{s} \rightarrow W=\int_{S_{1}}^{S_{2}} \vec{F}(\vec{s}) d \vec{s}$

$$
\begin{aligned}
& \begin{array}{l}
\text { Power } \mathrm{P}= \\
s^{-1}=W \text { Watt }
\end{array} \quad=\frac{d W}{d t}=\dot{W} ;[P]=J .
\end{aligned}
$$

$$
\mathrm{P}=\frac{\vec{F}(t) \cdot d \vec{s}}{d t}=\vec{F}(t) \cdot \vec{v}(t)
$$

1.4 Kinetic and potential energy

a) Potential Energy

Within the earth gravitational field: $m \cdot g \cdot h$
The work done remains as potential energy available: egg,;.

Another example: Potential energy stored in a string

b) Kinetic energy

Force: Reason of movement

$t=0$	t
$s=0$	s
$v=0$	v

Between $\mathrm{s}=0$ and s :

Work done $W=F \cdot s$

Energy must be due to movement of the body

$$
\begin{aligned}
& \mathrm{F}=\mathrm{a} \cdot \mathrm{~m}=\frac{d v}{d t} \cdot m=m \cdot \frac{d v}{d s} \cdot \frac{d s}{d t}=m \cdot v \cdot \frac{d v}{d s} \\
& F \cdot d s=m \cdot v \cdot d v \\
& \int_{0}^{s} F \cdot d s=d W=\int_{0}^{v} m \cdot v^{\prime} \cdot d v^{\prime}
\end{aligned}
$$

Constant force $\rightarrow \mathrm{F} \cdot \int_{0}^{s} d s=m \cdot \int_{0}^{v} v^{\prime} \cdot d v^{\prime}$

$$
F \cdot s=\frac{m}{2} v^{2}
$$

Work gets kinetic enery

$$
\mathrm{E}_{k i n}=\frac{1}{2} m \cdot v^{2}
$$

Experiment in a gravitational field $M=200 \mathrm{~g}, \mathrm{~m}=10 \mathrm{~g}$

$x(m) \Delta t \quad v \quad v^{2} 0.21 \cdot v^{2}$
 11.0650 .9390 .8820 .0926
 To compare with:

m
$0.21 \cdot v^{2}$

Experiment: Energy stored in a string :

$\mathrm{E}_{k i n}=\frac{m}{2}\left(\frac{\Delta x}{\Delta t}\right)^{2} \quad E_{p o t}=\frac{1}{2} D \cdot s^{2}$

$\Delta t(\mathbf{s})$	$\underset{(\mathrm{m})}{ \pm}$	$\mathrm{m}(\mathrm{kg})$	$E_{\text {kin }}$ Joule
0.277	0.01	0.205	0.013

Extracted from oscillation time

$$
\begin{aligned}
& T=2 \pi \sqrt{\frac{m}{D}}=1.7 \mathrm{~s} \\
& D=2.8 \mathrm{~kg} \cdot \mathrm{~s}^{-2} \quad \text { and } \quad \mathrm{s}=0.01 \mathrm{~m}
\end{aligned}
$$

$$
\mathrm{E}_{p o t}=0.014 \mathrm{~J}
$$

Conclusion: Conservation of energy:

In a closed system :

$$
E_{k i n}+E_{p o t}=\text { constant }
$$

Power: s.above.

$$
\mathrm{P}=\frac{\vec{F}(t) \cdot d \vec{s}}{d t}=\vec{F}(t) \cdot \vec{v}(t)
$$

Examples for magnitudes

Radiation of sun on top of earts atmospere:: $1.367 \mathrm{~kW} / \mathrm{qm}$
Received on surface ca $1 \mathrm{~kW} / \mathrm{qm}$
Powerplant:

$$
1 \mathrm{GW}=10^{9} \mathrm{Watt}
$$

Car: e.g.. : 50 kW
Plate on oven: 2 kW

Further examples:

Person: 80kg chimps in 10s on a staircase of wm;

$$
\begin{aligned}
\Longrightarrow P & =\frac{W}{t}=\vec{F} \cdot \vec{S} / t=m \cdot \vec{g} \cdot \vec{S} / t \\
& =\frac{80 \cdot 9.81 \cdot 5}{10}=392.4 \mathrm{~N} \cdot \mathrm{~m} / \mathrm{s}=0.53 P S
\end{aligned}
$$

Mass m starting with constant power accelerating: (e.g.: E-loc.

$$
\vec{F} \| \vec{v} v ?, a ?
$$

$$
\begin{aligned}
F & =\frac{P}{v} ; F=m \cdot a \Longrightarrow \frac{P}{v}=m \cdot \frac{d v}{d t} \\
\Longrightarrow v \cdot d v & =\frac{P}{m} d t \Longrightarrow
\end{aligned}
$$

$$
\int_{0}^{v(t)} v \cdot d v=\frac{P}{m} \cdot \int_{0}^{t} d t^{\prime} \Longrightarrow v^{2}(t)=\frac{2 \cdot P \cdot t}{m} \Longrightarrow
$$

$$
v(t)=\sqrt{\frac{2 \cdot P \cdot t}{m}} \quad a(t)=\sqrt{\frac{0.5 \cdot P}{m \cdot t}}
$$

Dam: Convert potential energy to kin. energy

$$
\mathrm{v}=\sqrt{2 \cdot g \cdot h}
$$

Kaprun: $h=800 \mathrm{~m}$
$\mathrm{v}=125 \mathrm{~m} / \mathrm{s}=$ 451km/h

1.5 Field of forces, Potential

Field of forces: Region, a mass point feel sa force

$$
\vec{F}=\vec{F}(\vec{r})
$$

Mass point transfer from A to B
\longrightarrow Work: $\mathrm{W}\left(r_{1}, r_{2}\right)=\int_{A}^{B} \vec{F}(\vec{r}) d \vec{r}$

In many cases $\mathrm{W}\left(r_{1}, r_{2}\right)$ independent of course

One speaks of conserative forces (fields).
$\Longrightarrow \int_{A}^{B} \vec{F}(\vec{r}) d \vec{r}$ course1 $\quad=\int_{A}^{B} \overrightarrow{\vec{F}}(\vec{r}) d \vec{r}$ course $\oint \vec{F}(\vec{r}) d \vec{r}=0$

In a conservative force field:

E_{p} Potential energy
$\mathrm{E}_{p}(x, y) \rightarrow \mathrm{E}_{p}(x+\Delta x, y+\Delta y)$
$\mathrm{E}_{p}(x+\Delta x, y+\Delta y)-\mathrm{E}_{p}(x, y)=\Delta \mathrm{E}_{p}=\frac{\partial E_{p}}{\partial r} \Delta x+$
$P^{\prime} \rightarrow \rightarrow P \quad$ Change of potential energy
$\mathrm{P}^{\prime} \rightarrow \rightarrow \rightarrow \mathrm{P}$

$$
\begin{aligned}
& \Delta W=\vec{F} \cdot \Delta \vec{r}=-\Delta \mathrm{E}_{p} \rightarrow \rightarrow \\
& F_{x} \cdot \Delta x+F_{y} \cdot \Delta y=-\frac{\partial E_{p}}{\partial x} \Delta x-\frac{\partial E_{p}}{\partial y} \Delta y \\
& \rightarrow \rightarrow \rightarrow F_{x}=-\frac{\partial E_{p}}{\partial x}, F_{y}=-\frac{\partial E_{p}}{\partial y}
\end{aligned}
$$

In general:

$$
F=-\operatorname{grad} E_{p}=-\nabla E_{p}
$$

A look forward towards theoretical mechanics

$$
\begin{aligned}
& m \ddot{x}-F(x, t)=0 \\
& m \ddot{x}+\frac{\partial E_{p}}{\partial x}=0 \\
& \frac{d}{d t} \frac{\partial}{\partial \dot{x}}\left(\frac{m \dot{x}^{2}}{2}\right)=\frac{d}{d t} \frac{\partial E_{k i n}}{\partial \dot{x}} \\
& \frac{d}{d t} \frac{\partial E_{k i n}}{\partial \dot{x}}+\frac{\partial E_{p}}{\partial x}=0
\end{aligned}
$$

mit $\frac{\partial L}{\partial \dot{x}}=\frac{\partial E_{k i n}}{\partial \dot{x}}$ und $\frac{\partial L}{\partial x}=-\frac{\partial E_{p}}{\partial x}$
Lagrange Funċtion: $L(\dot{x}, x)=E_{\text {kin }}(\dot{x})-$ $E_{p}(x)$

The law of Newton can be written as:

$$
\frac{d}{d t} \frac{\partial L(x, \dot{x})}{\partial \dot{x}}-\frac{\partial L(x, \dot{x})}{\partial x}=0
$$

Feynman II, 19

That is,how nature works!

