

Elastic means: Collision process does not consume energy

Collision in a straight line

Conservation
of momentum
of energy:
$$m_{1} \cdot v_{1} = m_{1} \cdot v_{1}' + m_{2} \cdot v_{2}' = 1$$
$$\frac{1}{2}m_{1} \cdot v_{1}^{2} = \frac{1}{2}m_{1} \cdot v_{1}'^{2} + \frac{1}{2} \cdot m_{2} \cdot v_{2}'^{2} = 2$$
From 1
$$m_{1}^{2} \cdot (v_{1} - v_{1}')^{2} = m_{2}^{2} \cdot v_{2}'^{2} = 3$$
From 2
$$m_{2} \cdot m_{1} \cdot (v_{1}^{2} - v_{1}^{2}) = m_{2}^{2} \cdot v_{2}'^{2} = 4$$

$$\frac{4}{3} \longrightarrow \frac{m_2 \cdot (v_1 + v_1')}{m_1 \cdot (v_1 - v_1')} = 1$$

$$\longrightarrow m_2 \cdot v_1 + m_2 \cdot v_1' = m_1 \cdot v_1 - m_1 \cdot v_1'$$

$$v_1' \cdot (m_2 + m_1) = (m_1 - m_2) \cdot v_1$$

Velocity of the pushing body after the collision

$$v_{1}' = \frac{m_{1} - m_{2}}{m_{1} + m_{2}} v_{1}$$

$$v_{2}' ?$$

$$m_{1} \cdot v_{1} = m_{1} \cdot v_{1}' + m_{2} \cdot v_{2}' \quad m_{1} \cdot v_{1} - m_{1} \cdot \frac{m_{1} - m_{2}}{m_{1} + m_{2}} v_{1} = m_{2} \cdot v_{2}'$$

$$v_{2}' = \frac{2 \cdot m_{1}}{m_{1} + m_{2}} v_{1}$$

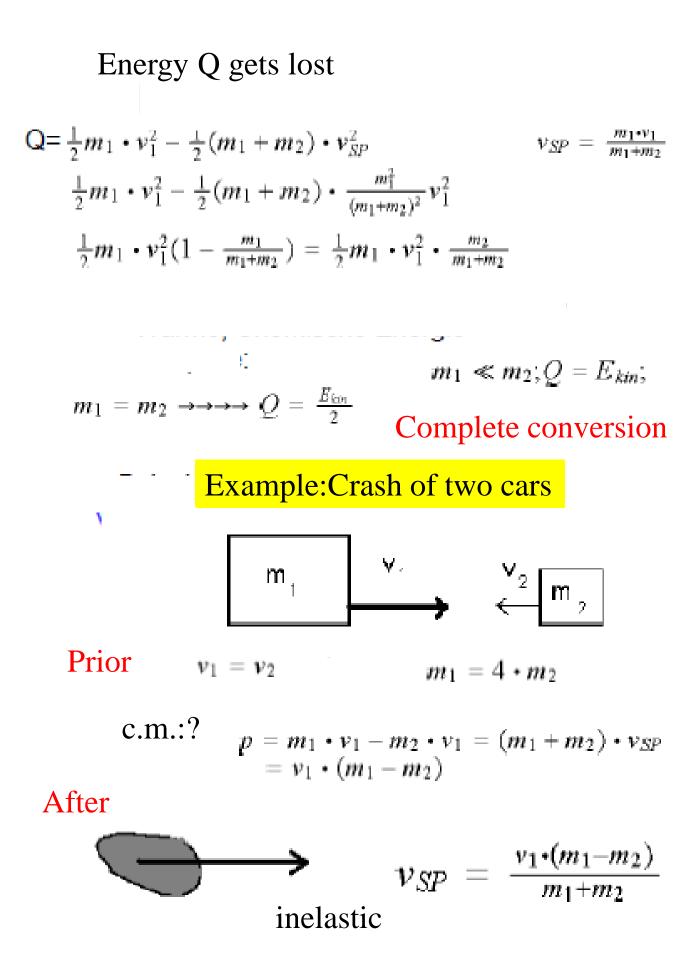
Different cases

m	1	=	m_{i}	2
---	---	---	---------	---

V	p transfer	E transfer
v'(2)=v(1)	\ complete _	complete _
v'(1)=0	p(1)->p(2)	E(1)->E(2)'

 $m_1 \ll m_2$

v'(2)< <v(1)< td=""><td>Max.ptransfer</td><td>Min.Etransfer</td></v(1)<>	Max.ptransfer	Min.Etransfer
v'(1)~-v(1)	2p(1)	V(2)'~0

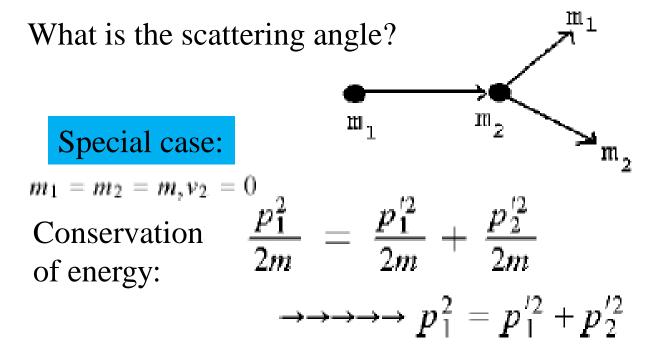

Like a reflection on a wall

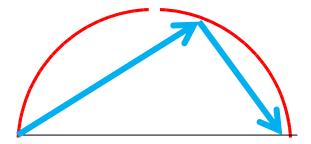
 $m_1 \gg m_2$

V	р	E	
v(1)'~v(1)	small	small	
v(2)'~2v(1)!	p(1)'-p(1)~0		

c) Inelastic collision Mechanical energy gets lost c.m,-momentum conserved:

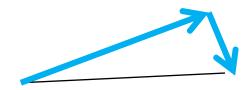
$$m_1 \cdot v_1 = (m_1 + m_2) \cdot v_{SP} \longrightarrow v_{SP} = \frac{m_1 \cdot v_1}{m_1 + m_2}$$


Change of velocity


$$m_1 : \Delta v_1 = \frac{2}{5}v_1 \\ m_2 : \Delta v_2 = \frac{8}{5}v_1$$

With: i:
$$v_1 = 50 \text{ km/h}$$

Catapulted back
 $\Delta v_1 = 20 \text{ km/h}$ $\Delta v_2 = 80 \text{ km/h}$
Injuries by acceleration!


Important $\frac{\Delta v}{\Delta t} \sim$ Ratio of masses

Next example: Elastic collision in a plane

After scattering: The bodies fly apart with an angle of 90 deg.

