2. Mechanics of a rigid body

In general for a point on a rigid body:

$$\vec{v} = \vec{v}_0 + \vec{\omega} \times \vec{r}$$

e.g.Translation + Rotation

Analoga:

	Translation	Rotation
Position	\overrightarrow{r}	$ec{arphi}$
Velocity	$\vec{v} = \vec{r}$	$\vec{\omega} = \vec{\varphi}$
Accelera tion	$\vec{a} = \vec{r}$	$\vec{\omega} = \vec{\varphi}$

2.2. Energy of rotation and moment of inertia

and kinetic energy
$$\frac{1}{2}m_i \cdot v_i^2$$

$$v_i = \omega_i \cdot r_i \longrightarrow E_{kin_i} = \frac{1}{2}\omega^2 \cdot m_i \cdot r_i^2$$

Total kinetic energy

Energy of rotation:
$$W_{Rot} = \frac{1}{2}\omega^2 \cdot \Sigma_i m_i \cdot r_i^2$$

Transition to a continuous distribution of mass: $[\rho] = \frac{kg}{m^3}$

$$\int dm \cdot r^2 : W_{Rot} = \frac{1}{2}\omega^2 \int dm \cdot r^2; \qquad \qquad m_i \to \Delta m_i \to dm = \rho \cdot dV$$

Moment of inertia I: $[I] = kg \cdot m^2$

element of volume)

(Element of mass = density x

Analogy: Translation – Rotation: v-> ωm-> I

 $\vec{r} \rightarrow$

I plays the same role of a movement of rotation around an axis, as m at a translation

2.3. Momentum of rotation and torque

Equation of movement: $\vec{F} = m \cdot \vec{r}$

Product of vectors

 $\vec{r} \times \vec{F} = \vec{r} \times m \cdot \vec{r}$ We consider : Central force: $\vec{F} = \vec{r} \times \vec{r} \times \vec{F} = 0$ $\xrightarrow{\rightarrow \rightarrow \rightarrow} \vec{r} \times m \cdot \vec{r} = 0$ We recognize a new quantity: $\vec{L} = \vec{r} \times m \cdot \vec{r}$ cause: $\frac{d\vec{L}}{dt} = \frac{d}{dt} \left(\vec{r} \times m \cdot \vec{r} \right) = \vec{r} \times m \cdot \vec{r} + \vec{r} \times m \cdot \vec{r}$ But: $\vec{r} \times m \cdot \vec{r} (s.o.) = 0 = \vec{r} \times m \cdot \vec{r}$ Momentum of rotation L $\rightarrow \rightarrow \vec{L}$ Definition: $\vec{L} = \vec{r} \times \vec{p}$

At a rigid body:

$$\vec{L} = \sum_{i} m_{i} \cdot \vec{r}_{i} \times \vec{v}_{i} = \sum_{i} m_{i} \cdot \vec{r}_{i} \times (\vec{\omega} \times \vec{r}_{i})$$
Rules of calculations
with vectors:

$$\vec{a} \times (\vec{b} \times \vec{c}) = \vec{b} \cdot (\vec{a} \cdot \vec{c}) - \vec{c} \cdot (\vec{a} \cdot \vec{b})$$

$$\rightarrow \vec{r}_{i} \times (\vec{\omega} \times \vec{r}_{i}) = \vec{\omega} (\vec{r}_{i} \cdot \vec{r}_{i}) - \vec{r}_{i} \cdot (\vec{r}_{i} \cdot \vec{\omega})$$
Momentum of rotation of a rigid body:

$$\vec{L} = \vec{\omega} \cdot \sum_{i} m_{i} \cdot r_{i}^{2} = I \cdot \vec{\omega}$$

$$\vec{r}_{i} \perp \vec{\omega} \rightarrow (\vec{r}_{i} \cdot \vec{\omega}) = 0$$

$$[\vec{L}] = kg \cdot m^{2} \cdot s^{-1}$$

$$\vec{d}L/dt = \sum_{i} m_{i} \cdot \vec{r}_{i} \times \vec{v}_{i} + \sum_{i} m_{i} \cdot \vec{r}_{i} \times \vec{v}_{i} =$$

$$\vec{T} = \frac{d\vec{L}}{dt}$$
Force times distance $\sum_{i} m_{i} \cdot \vec{r}_{i} \times \vec{a}_{i}$

$$\frac{d\vec{L}}{dt} = \frac{d}{dt}(I \cdot \vec{\omega}) = I \cdot \vec{\omega}$$

Basic law of dynamics of movement of rotation

 $\vec{T} = \vec{L} \rightarrow \rightarrow \vec{T}$ causes change of \vec{L} . For a closed system: $\vec{T} = 0; \rightarrow \rightarrow \vec{L} = 0$

The whole momentum of rotation of a system remains constant, as long as no torque from outside tackles. Examples for momenta of inertia :

$$I = \int dm \cdot r^{2} = \rho \cdot \int r^{2} \cdot dV; \text{mit} \quad dV = 2\pi \cdot r \cdot dr \cdot dh$$

$$I = 2\pi \cdot \rho \cdot h \cdot \int_{0}^{R} r^{3} \cdot dr = 2\pi \cdot \rho \cdot h \cdot \frac{r^{4}}{4} \mid_{0}^{R}$$

$$I = \pi \cdot \rho \cdot h \cdot \frac{R^{4}}{2}; \text{da } M = \rho \cdot V = \pi \cdot R^{2} \cdot h \cdot \rho$$

$$\Rightarrow I = 0.5 \cdot M \cdot R^{2}$$

2.4. Conversion of energy

Analogy from :Energy of rotation: $E_{kin_i} = \frac{m_i}{2} \cdot v_i^2$ $\sum \frac{m_i}{2} r_i^2 \cdot \omega^2$ leads to $\frac{1}{2}I \cdot \omega^2$

Force against a centrifugal force with diminishing r

Energy in a system of rotation, e.g. rotating stool

2.5. Comparison: Translation- Rotation

Translation	Rotation	
Distance: $\vec{s}(\vec{r})$	Angle $\vec{\phi}$	
Velocity $\vec{v} = \vec{r}$	Angular velocity $\vec{w} = \vec{\phi}$	
Acceleration $\vec{a} = \vec{v} = \vec{r}$	Angular acceleration $\vec{\omega} = \vec{\phi}$	
Mass: m	Moment of inertia $I = \int dm \cdot r^2$	
Force \vec{F}	Torque $\vec{T} = \vec{r} \times \vec{F}$	

The basic laws

$$\vec{F} = m \cdot \vec{a} \qquad \vec{T} = I \cdot \vec{\omega}$$
$$\vec{F} = \frac{d\vec{p}}{dt} \qquad \vec{T} = \frac{d\vec{T}}{dt}$$

Uniform movements

$$\vec{a} = 0, \vec{s} = \vec{v} \cdot t \qquad \vec{\omega} = 0, \vec{\phi} = \vec{\omega} \cdot t$$

Uniform accelerated movements:

$$\vec{v} = \vec{a} \cdot t, \vec{s} = \vec{a} \cdot \frac{t^2}{2} \qquad \vec{a} = \text{constant} \quad \vec{\omega} = \text{constant}$$

$$\vec{\omega} = \vec{\omega} \cdot t, \vec{\phi} = \vec{\omega} \cdot \frac{t^2}{2} \qquad \text{Momentum:} \quad \vec{p} = m \cdot \vec{v}$$
Kin. Energy:
$$E_{kin} = m \cdot \frac{v^2}{2}$$
Momentum of rotation:
$$\vec{L} = I \cdot \vec{\omega}$$
Rotat. Energy:
$$W_{rot} = I \cdot \frac{\omega^2}{2}$$

Work and power:

$$W = \int \vec{F} \cdot d\vec{s} \qquad W = \int \vec{T} \cdot d\vec{\phi}$$
$$P = \vec{F} \cdot \vec{v} \qquad W = \vec{T} \cdot \vec{\omega}$$

2.6. Equilibrium of a rigid body

 $\vec{F} = 0; \vec{T} = 0$ Equilibrium: $\vec{F} = 0 = \vec{F}_1 + \vec{F}_2 + \vec{F}_3$ No translation: $|\vec{F}_3| = |\vec{F}_2| + |\vec{F}_1|$ $\vec{T} = 0; \vec{T}_1 + \vec{T}_2 = 0$ No rotation: $\vec{F}_1 \times \vec{r}_1 + \vec{F}_2 \times \vec{r}_2 = 0$ $F_1 \bullet r_1 = F_2 \bullet r_2$ $\implies \frac{F_1}{F_2} = \frac{r_2}{r_1}$

Law of lever (Archimedes 250 v.Chr.)

Extended body:

Under what cirumstances is $\vec{T} = 0$

Torque due to gravity:

$$\vec{T}_g = \sum_i \vec{r}_i \times m_i \times \vec{g}$$

0?, if and only if

$$\vec{r}_{SP} = \frac{\sum_{i} m_i \cdot \vec{r}_i}{\sum_{i} m_i}$$

If origin = center of mass

States of equilibrium:

2.7. Rotational oscillations

At displacement: Torque

 $\vec{T} = -D^* \cdot \vec{\vartheta};$ Angular benchmark

Equation of movement: $I \cdot \vartheta = -D^* \cdot \vartheta$

Solution: $\vartheta(t) = \vartheta_0 \cdot \cos \omega_0 \cdot t$ ϑ_0 : max. displacement $\Rightarrow \omega_0 = \sqrt{\frac{D^*}{I}} I = I_{sp} + M \cdot s^2$

Compound pendulum

Torque: $-M \cdot g \cdot s \cdot \sin \vartheta$ $\sin \vartheta \approx \vartheta$ $\Rightarrow T = -M \cdot g \cdot s \cdot \vartheta$

$$I \cdot \dot{\omega} = I \cdot \vartheta \quad \Rightarrow I \cdot \vartheta = -M \cdot g \cdot s \cdot \vartheta$$

$$\Rightarrow \omega_0 = \sqrt{\frac{M \cdot g \cdot s}{I_{sp} + M \cdot s^2}} \text{ mit } I = I_{sp} + M \cdot s^2 \quad \frac{s}{I_{sp} + M \cdot s^2} = \frac{\text{Red}}{\text{ of th}}$$

Reduced length of the pendulum