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CHAPTER 1

Introduction

The 3.5 GeV electron pulse stretcher accelerator ELSA provides spin polarized and unpolarized elec-
trons for hadron physics experiments. Electron accelerators have been operated by the Physics Institute
of Bonn University since 1958.[HIL06] The pulse stretcher ring ELSA was added to the existing peri-
phery in 1987. The stretcher ring injector system follows a typical scheme: A LINAC1 accelerates a
50 keV electron beam from the polarizing or thermal source up to 26 MeV. It is then injected into the
booster synchrotron [ALT67] for further acceleration and extracted into ELSA at an energy of 1.2 GeV.
ELSA accumulates and stores the electron bunches. Three different modes of operation are available:

• In pulse stretcher mode the electrons remain at injection energy. The accumulated bunches are
evenly distributed around the storage ring and slowly extracted for experimental usage. A duty
factor2 towards 100 % is achievable.

• The post accelerator mode allows modification of the beam energy between 0.5–3.5 GeV. A fast
energy ramp of up to 7 GeV/s is applied after injection, followed by a slow extraction process.
This is the standard operation mode of ELSA providing a duty factor of 60–80 %.

• In storage mode the beam is accumulated, ramped to the corresponding energy and stored for up
to several hours. Since the appearance of third generation synchrotron light sources3 with higher
beam brilliance this mode is nowadays primarily used for machine studies requiring stable beam
intensities.

ELSA is currently the primary instrumentation device for the nuclear physics program of Bonn Uni-
versity and the German Research Foundation within the Collaborative Research Center Transregio 16
(CRC TRR 16). [THOb] It contributes to the scientific exploration of the subnuclear structure of mat-
ter and intrinsically to the field of accelerator physics. Two experimental stations are supplied by an
extracted electron beam of approximately 1 nA beam current. Both stations are used for tagged photon
experiments, namely the Crystal-Barrel [THO05] and BGO-OD [SCH10] experiment.

Responding to the demands of electron beam irradiation, e.g. for detector testing, two beamlines
are currently in commissioning. The high energy irradiation beamline will be supplied by electrons

1 Linear accelerator
2 Time of beam delivered to the experiment divided by total time of cycle.
3 Facilities built for synchrotron radiation production only.
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1 Introduction

extracted from ELSA. A low energy irradiation station is installed at the injector beamline of LINAC 1
(20 MeV).

The ELSA facility is illustrated in Fig. 1.1. Table 2.1 gives an overview of important machine para-
meters.

The instrumentation development project D.2 of the CRC TRR 16 supports studies for a rise of
beam polarization, beam current and quality. [THOa] The subsequent development constantly enhances
the machine’s subsystems, including its diagnostics. Amongst other features, ELSA is operated with
state of the art controls, bunch-by-bunch feedback and precise beam measurement systems. Current
developments include the extension of the RF4 system for the storage and extraction of higher beam
currents at high energies, an upgrade of the injector LINAC 1 in order to provide single bunch injection
and the extension of the beam diagnosis capabilities.

In order to satisfy the requirements for beam quality and stability, non-destructive beam diagnosis
is essential. However, monitoring systems based on capacitive or inductive beam interaction usually
meet their resolution limits when sampling beyond nanosecond intervals is required. The length of the
electron distribution in synchrotrons is usually in the range of picoseconds, thus making it impossible
to be resolved by capacitive or inductive monitoring systems.

An alternative monitoring approach is the utilization of synchrotron radiation. This radiation is in-
tensely generated by electron deflection within the bending magnets of a synchrotron. The emitted light
yields precise 3-dimensional information about the electron distribution in the machine. The limit of its
resolution is given by the optical image processing system. Today, streak camera systems offer temporal
resolutions down to one picosecond, thus increasing the diagnostic capabilities by three orders of mag-
nitudes when comparing to capacitive systems. The imaging of single bunches and their dynamics in
time windows ranging from nanoseconds to several milliseconds becomes available. Instability studies
will be used to implement optimized settings of the accelerator’s operation parameters.

This document describes the set-up and operation performance of the newly installed streak camera
system at ELSA. In order to understand the measurement results, the properties of the source point, the
optical transfer beamline and the streak camera are explained in the following chapters.

4 Radio frequency, e.g. 500 MHz
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CHAPTER 2

Charged Particle Beam Dynamics In Electron
Storage Rings & Imaging Techniques

Due to the fundamentals of electromagnetic theory [JAC98] charged particle deflection causes the emis-
sion of electromagnetic radiation. In electron synchrotrons this synchrotron radiation occurs intensively
when ultra-relativistic particles are deflected in the magnetic dipole fields of the bending magnets. In
combination with the accelerator’s subsystems – such as the accelerating cavities – this emission pro-
cess strongly determines the particles’ dynamics and hence the beam dimensions. When utilizing the
synchrotron radiation, it is important to understand the source point parameters which are given by the
underlying physics of the electron beam. The following sections summarize relevant laws and relations.
If not stated otherwise, the formulas and context are in accordance to [WIL86].

2.1 Particle Motion

The radiation source point in a bending magnet is solely determined by the electrons’ locations in six-
dimensional phase space. These coordinates denote unavoidable deviations of an arbitrary real particle
from an ideal particle traveling on the design orbit. We express these coordinates in vectorial notation:

~x(s) = (x, x′, z, z′,∆s, δ)T (s), (2.1)

where x and z are the horizontal (radial) and vertical (axial) displacements and x′ and z′ the correspond-
ing divergences. ∆s describes the longitudinal displacement from the design particle and δ =

∆p
p = ∆E

β2E

its momentum deviation. For ultra-relativistic particles we obtain ∆p
p ≡

∆E
E since β → 1. Note that all

entries of Eq. (2.1) are dependent on the particle’s longitudinal position throughout the lattice. The lat-
tice represents the magnet structure around the ring which determines the beam optics. The coordinate
system used for beam tracking in circular machines is of curvilinear and right-handed nature (x, s, z) as
illustrated in Fig 2.1.
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2 Charged Particle Beam Dynamics In Electron Storage Rings & Imaging Techniques

reference orbit

x

z

~v

s

Figure 2.1: Coordinate system used for particle tracking in circular machines.

2.1.1 Transverse Motion

Particle motion is described in linear approximation by Hill’s differential equations for both transverse
planes:

x′′(s) +

(
1

R2(s)
− k(s)

)
=

1
R(s)

∆p
p

(2.2)

z′′(s) + k(s) = 0, (2.3)

where R(s) is the local bending radius, k(s) the quadrupole strength, p the particle’s momentum and ∆p
its momentum deviation. No coupling between the transverse planes is assumed. Eq. (2.3) holds for
a machine where bending takes place solely in the horizontal plane. The solution of Eq. (2.2) yields a
single particle trajectory

x(s) =
√
ε̃xβx(s) cos (ψx(s) + φx), (2.4)

where ε̃x is called the single particle emittance, βx(s) the horizontal β-function (compare Fig. 2.3), φx

an integration constant and

ψx(s) =

∫ s

0

ds′

βx(s′)
(2.5)

the particle’s phase. Vertical considerations are obtained in analogy.
In a circular machine it is essential that a particle’s displacement and angle must differ from turn to

turn for any location (compare with Eq. (2.14)), forming an elliptical trajectory in phase space. The
enclosed area is a measure for an invariant called the single particle emittance ε̃, based on Liouville’s
theorem in which an area in phase space is preserved if only conservative forces are applied. Despite
non-conservative forces act on the beam in electron synchrotrons, the theorem holds as the beam reaches
an equilibrium state (compare with section 2.1.3) and deviations occur on a relatively long time scale
compared to the revolution period. Since the covered area within phase space is of elliptical nature, one
may describe the single particle emittance ε̃x with the so called Twiss-parameters α(s), β(s) and γ(s) as
in

ε̃x = γ(s)x2(s) + 2α(s)x(s)x′(s) + β(s)x′2(s) = A/π, (2.6)

where A is the enclosed area as illustrated in Fig. 2.2.
In a particle distribution the sizes of the individual particle phase space ellipses differ. It is useful

to introduce a statistical type of emittance, called the beam emittance ε. It is a measure of the beam’s
size and divergence in one particular plane, corresponding to the statistical distribution of particle’s
displacements and angles which usually follows a Gaussian distribution 1. The variances (σ and σ′)

1 The Gaussian distribution is typical for particles at γ � 1.

6



2.1 Particle Motion

turn 123
4

5

Figure 2.2: Twiss-parameters α, β and γ describing the orientation and size of the phase space ellipse.

also form an ellipse in phase space (e.g. {x, x′}), thus the beam emittance is derived as

εx =

√
x2 · x′2 − xx′

2 (∗)
= σx · σ

′
x. (2.7)

(∗) holds if the ellipse’s major and minor axis are parallel to the axis of x and x′. Then the beam
emittance becomes the product of width and divergence of the corresponding 1-σ distributions. [LEE04,
p. 61]

It may now be apparent, that the function β(s) is a measure of the envelope enclosing all particle
trajectories. It is only dependent on the beam optics2 and together with the beam emittance ε it defines
the 1-σ particle distribution of the beam envelope as in

σx(s) =
√
εxβx(s). (2.8)

The same holds for the vertical plane.
It must be noted that momentum deviation also contributes to the beam size due to sections with

dispersion D(s). We obtain an additional displacement ∆x for particles with momentum deviation:

∆x = D(s)
∆p
p
. (2.9)

The expected beam size at any location is now depicted by

σx(s) =

√
εxβx(s) +

(
D(s)

∆p
p

)2

. (2.10)

As will be shown in section 2.1.3, beam emittance ε and energy deviation of a particle distribution(
σE
E

)
are dependent on the beam energy. Also note that there are no dispersive elements in the vertical

plane if the accelerator is built as flat machine such as ELSA.
Dispersion D(s) and both transverse functions βx(s) and βz(s) are illustrated for ELSA in Fig. 2.3.

One may notice that βx(s) and βz(s) are never decreased simultaneously. The reason lies in the focusing

2 The functions are normalized to beam energy

7



2 Charged Particle Beam Dynamics In Electron Storage Rings & Imaging Techniques
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Figure 2.3: Theoretical dispersion D(s) and functions βx(s) and βz(s) throughout the full length of ELSA during
the slow extraction process. The tunes are Qx = 4.63 and Qz = 4.39.

properties of magnetic quadrupole fields. If one plane is focused, the other one is defocused. Fortunately
overall stability3 is achievable following the optics relation

1
ftot

=
1
f1

+
1
f2
−

d
f1 f2

(∗)
=

1
f1
. (2.11)

The equality (∗) represents one of many solutions for stability with d = f1 = − f2. The thin lens
approximation may be used for short quadrupole lengths Lquad. The focal length of a thin quadrupole
magnet is then given by

fquad = −
1

kLquad
, (2.12)

where k is again the quadrupole strength. It is dependent on the gradient of the magnetic quadrupole
field. For a conventional iron quadrupole built into ELSA it can for example be calculated by

k =
e
p
∂Bz

∂x
=

e
p

2µ0nI
a2 , (2.13)

where p is the momentum of the electron with charge e, µ0 the vacuum permeability, I the current
running through the coils with n windings and a denotes the magnet yoke gap distance to the center.
The alternating setup of (horizontally) focusing (F) and defocusing (D) quadrupole magnets is called
FODO. The O denotes zero focusing in between the quadrupoles.

Transverse beam dynamics are dependent on the transverse tune of the machine:

Qx,z =
1

2π
·

∮
ds

βx,z(s)
. (2.14)

3 Focusing in both planes simultaneously

8



2.1 Particle Motion

It describes the number of transverse oscillations of an off-orbit particle around the closed orbit within
one turn around the accelerator (betatron oscillation). In order to obtain a stable beam it is of most
importance to set the tune to non-integer, non-half-integer, and so on. This avoids the repetitive effects
of magnetic field errors. The phase ψx,z as denoted in Eq. (2.4) must therefore change non-repetitively
from turn to turn. The tune can be shifted via change of quadrupole strength δk according to

∆Qx,z =
1

4π

∫
βx,z(s)δkx,z(s)ds. (2.15)

One therefore expects betatron oscillations with corresponding frequencies

ωx,z = ω0Qx,z, (2.16)

where ω0 = 2π/Trev = 2πc/L denotes the angular revolution frequency, L being the circumference of
the accelerator.

Incoherent4 betatron oscillations with frequency ωx,z actually define the transverse dimensions of
the beam according to Eq. (2.8). If the beam is kicked transversely at once, one observes a coherent5

oscillation of the beam at the frequencies denoted in Eq. (2.16). It must be noted that small variations
of ω0

6 result in slightly different oscillation frequencies for the corresponding particles. The common
phase of the particles will increasingly differ with time. Therefore a coherent oscillation will always
become incoherent. The same holds for longitudinal particle oscillations which are called synchrotron
oscillations.

2.1.2 Effects of Synchrotron Radiation & Longitudinal Motion

As mentioned in the introduction of this chapter, the emission of synchrotron radiation in combination
with the longitudinal electric field of the accelerating cavities ~Eel(s) completely determines the natural
beam dynamics and subsequently the beam dimensions. In order to understand this, one must consider
the consequences that arise from the emission process. The energy loss of one particle per revolution is
denoted as circumference voltage and can be calculated via

∆ESR/eV =
eβ3

3ε0
·
γ4

R
≈ 88.5 × 103 (E/GeV)4

R/m
, (2.17)

with ε0 being the vacuum permitivity, R the magnet bending radius and β = p/E and γ = E/E0 the
relativistic quantities. The approximation holds for electron synchrotrons. The total power loss due to
the emission of synchrotron radiation is consequently

∆PSR loss = ∆ESR · Ibeam, (2.18)

where Ibeam = Ne/Trev denotes the stored beam current with N being the total number of particles7 in
the machine. As consequence the accelerating cavities are operated continuously in order to compensate
for synchrotron radiation losses via

∆ESR
!
= ∆ERF =

∫ s

s0

e
(
~Eel(s) + ~c × ~B

)
· d~s′. (2.19)

4 All particle oscillations differ in phase.
5 All particles oscillate in phase.
6 Due to energy deviation ∆E (see Fig. 2.4).
7 assuming charge Q = Ze = e with Z = 1 for electrons

9



2 Charged Particle Beam Dynamics In Electron Storage Rings & Imaging Techniques

∆ERF represents the particle energy gained from the Lorentz force within the RF cavities, ~B is an arbit-
rary magnetic field. Only the longitudinal component of the electric field ~Eel contributes to the scalar
product, therefore being the only mechanism available for energy restoration. The sinusoidal electric
accelerating field determines the longitudinal spacing of the beam:

fRF =
1

TRF
=

c
λRF

. (2.20)

Electron beams in synchrotrons occur always bunched. One obtains as total number of bunches in a
machine of length L the harmonic number

h =
L
λRF

. (2.21)

When ultra-relativistic particles deviate in energy ∆E/E > 0, they become more rigid but the velocity
remains unchanged. The additional momentum causes a particle to revolve on a larger orbit compared
to the design particle. The revolution period Trev subsequently suffers from time delay and decreases its
value of ∆s. Longitudinal defocusing occurred. In order to obtain re-focusing the phase ψs of the design
particle arrival is not coincident with the phase of the maximum cavity voltage U0. For relativistic
particles ψs is located on the falling flank of the sine function as illustrated in Fig. 2.4. The positive
phase shift of more rigid particles results in less energy gain when leaving the cavity. This focusing
effect results in longitudinal synchrotron oscillations.

1 2 3 4 5 6

longitudinal oscillations
due to dispersion

1 2 3 4 5 6

RF cavity

dispersive orbits

Figure 2.4: Longitudinal incoherent oscillations of the electrons distribution around the synchrotron phase ψs at
the accelerating voltage Uacc. momentum deviation causes particles to propagate on dispersive orbits.

The angular synchrotron frequency ωs is given by

ωs = ω0

√√√
eU0hαc

2πE

√
1 −

1
q2 , (2.22)

where E is the particle energy, q = U0/Uacc the over voltage factor of the accelerating cavity and

αc =
∆L/L
∆p/p

(2.23)

10



2.1 Particle Motion

the momentum compaction factor. Note the explicit dependency on E keeping energy deviations in
mind.

2.1.3 Beam Equilibria & Beam Dimensions

As the emission process of synchrotron radiation is of statistical nature, it heats the beam8 in all three
spacial dimensions. However, due to phase focusing the longitudinal excitation is damped. Since the
accelerating cavity restores only the longitudinal momentum component p‖, the beam is also damped
transversally. The result is an equilibrium state of excitation and damping. If the beam is excited by outer
influence for a finite period of time, it will damp back to the equilibrium state with the corresponding
damping constant αi, i = {x, z, s} as in

σi(t) = σi,0(1 + e−αst). (2.24)

The damping constants are obtained via

αi =
∆ESR

2ETrev
· Ji, (2.25)

where E denotes the beam energy, Trev = L/c the orbit revolution time and Ji the damping number. The
magnetic structure parameterD determines

Js = 2 +D, (2.26)

Jx = 1 −D and (2.27)

Jz = 1 with (2.28)

D =

∮ Dx(s)
R(s) · ds

2πR
=
αcL
2πR

. (2.29)

In separated function machines9 such as ELSA damping occurs in all three planes simultaneously
since αc is small and the damping numbers Ji remain positive.

Naturally, particle distributions have a finite energy deviation σE/E. Due to the damping the equilib-
rium state can be calculated according to

(
σE

E

)
=

√
55

32
√

3
·
~cγ2

JsE0
·

〈
1/R3〉〈
1/R2〉 (∗)

= γ

√
Cq

JsR
, (2.30)

where γ is the relativistic quantity, ~ the Planck constant, Js the longitudinal damping number, R the
magnet bending radius and E0 the rest mass of the corresponding particle. For electrons (∗) holds if all
bending magnets are equal10, with Cq ≈ 3.84 · 10−13 m. Note that the energy deviation rises linearly
with beam energy.

In analogy to the betatron oscillations in Eq. (2.16) the incoherent longitudinal oscillations ωs de-
termine the bunch length σs. According to [EBE10] it can be calculated via

σs =
cαc

ωs

(
σE

E

)
. (2.31)

8 increasing incoherent motion of the particle distribution (momentum deviation)
9 Focusing magnets and bending magnets are separated.

10 Bending magnets equal in magnetic field strength and length.

11



2 Charged Particle Beam Dynamics In Electron Storage Rings & Imaging Techniques

Alternatively one can use the similar relation

σs =
c
ω0

√
2πηE

heU0 cosψs
·

(
σE

E

)
, (2.32)

where η = (1/γ−αc) ≈ −αc is the slippage factor, h the harmonic number and ψs the synchrotron phase.
Note the proportionality σs ∝ γ

3/2.

The damping has a similar effect on the horizontal natural emittance εx is in Eq. (2.30). It can be
calculated by

εx =
55

32
√

3
·
~cγ2

JxE0
·

〈
1/R3 · H(s)

〉
〈
1/R2〉 , (2.33)

with
H(s) = γ(s)D2(s) + 2α(s) · D(s)D′(s) + β(s)D′2(s). (2.34)

Here α(s), β(s) and γ(s) are again the Twiss-parameters (compare Eq. (2.6)) and D(s) the dispersion
function. If all bending magnets are equal we obtain for electron beams

εx[m · rad] = 1.47 · 10−6 ·
E2[GeV]

R[m] · L[m]
·

∫ L

0
H(s) · ds. (2.35)

Note that the natural emittance scales with E2. Based on Eq. (2.10) we can conclude that the transverse
beam size scales linearly with E.

It should be noted that the emittance is strongly dependent on dispersion as obtained from Eq. (2.34).
Dispersion is neglectable in the vertical plane, yet the emittance is not observed experimentally to be
infinitely small. Coupling effects between the horizontal and vertical plane due to magnet misalignments
contribute to εz and hence widen the vertical beam size σz. The transverse emittances share the relation

εz = κεx, (2.36)

where κ is the emittance coupling factor.

The above presented quantities are summarized exemplarily in Tab. 2.1 for ELSA.
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Table 2.1: ELSA pulse stretcher ring parameters
Parameter (at 3.2 GeV if applicable) Value
Beam energy E 0.5–3.5 GeV
Circumference L 164.4 m
Lattice type FODO
Cavity RF frequency fRF 499.67 MHz
Circulation frequency frev 1.82 MHz
Harmonic number h 274
Momentum compaction αc 6.3 %
Bending radius R 10.88 m
Energy loss per turn ∆ESR(E) 0.85 MeV
Natural emittance εx(E) 0.75 µm rad
Natural energy spread

(
σE
E

)
(E) 0.08%

Damping times τx, τz, τs(E) 4.9 ms, 4.1 ms, 1.9 ms
Bunch length σs(E) 102 ps
Betatron tunes Qx and Qz 4.63, 4.39
Synchrotron frequency fs 88.0 kHz

2.2 Nature of Synchrotron Radiation

The properties of synchrotron radiation impose certain requirements on an optical transfer beamline.
The relevant theoretical fundamentals of synchrotron radiation are briefly presented in this section.

2.2.1 Radial Distribution

Accelerated charged particles at classic velocities v radiate an amount of power according to the Larmor
formula [WIE95]

P =
2
3

1
4πε0

e2v̇2

3c2 . (2.37)

The radial power distribution per solid angle is well known from a classical Hertz dipole. It holds for
the rest frame of the electron:

dP
dΩ

=
e2

16π2ε0c3 v̇
2 sin2 φ. (2.38)

φ is the angle between the direction of acceleration and the observing point. It is apparent that the
power of radiation is proportional to the acceleration v̇ which is performed by the bending magnets of
particle accelerators. However, in this case the particles are moving at ultra-relativistic velocities. When
considering the power distribution in the laboratory frame, it becomes conical and highly collimated
into the direction of movement:

dP
dΩ

=
e2v̇2

16π2ε0c3

1
(1 − β cos φ)3

[
1 −

sin2 φ cos3 θ

γ2(1 − β cos φ)2

]
. (2.39)

Here v̇ corresponds to β2c2/R as given by the centrifugal force. The power distribution is illustrated in
Fig. 2.5.
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β
x
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v

Figure 2.5: Calculation of the angular power distribution as given by Eq. (2.39) at β = 0.9.

The root mean square11 opening angle of the total radiation is given by Eq. (2.39) and corresponds to

φrms ≈
1
γ
. (2.40)

Synchrotron radiation emitted from ultra-relativistic particles (e.g. γ ≈ 6000) is therefore highly col-
limated.

2.2.2 Spectral Distribution

One has to keep in mind that the radiation is imaging the bunched electron distribution in the machine.
As the bunches move across the orbit, the emitted light is swept along the outer vacuum chamber. Due
to the 2/γ collimation, an observer behind a horizontal aperture therefore receives photons emitted
between the points P0 and P1. The geometric circumstances are illustrated in Fig. 2.6.

Figure 2.6: An observer sees the emitted light of particles between point P0 and P1.

As consequence the duration of the light pulse δt determines a broad spectrum of emission from a

11 as in σrms =

√
Σi x2

i
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2.2 Nature of Synchrotron Radiation

bending magnet. It is given by the difference of travel time of photon and electron as in

δt = te − tγ ≈
4R

3cγ3 . (2.41)

This very short pulse duration translates into an energy uncertainty, due to the uncertainty principle of
wave mechanics . It is sufficient to estimate a critical frequency ωc based on half of the signal duration
1
2δt. One obtains an approximation for the critical frequency ωc according to

~ωc = δE ≈
h
δt
≈
~3cγ3

4R
. (2.42)

The spectrum then spans over
ωtyp = 2ωc. (2.43)

According to [LEE04] the intensity spectrum can be calculated via

I(ω) =

√
3e2

4πε0c
γ

∫ ∞

ω/ωc

K5/3(y)dy, (2.44)

where K5/3(y) is a modified Bessel function. The spectrum is visualized in Fig. 2.7 for different electron
beam energies.
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Figure 2.7: Frequency spectrum of the radiated flux for different electron beam energies.

The intensity of the visible part of the spectrum remains unchanged for the available beam energies.
However, the high energy components ranging to hard X-rays are of importance considering machine
protection.

Focusing on low energy radiation only (ω << ωc), [WIE95] states a law for the horizontal emission
angle which is dependent on the photon energy εph = ~ω:

φph ≈
0.54626
E[GeV]

(
ω

ωc

)1/3

=
7.124(

R[m]εph[eV]
)1/3 . (2.45)
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2 Charged Particle Beam Dynamics In Electron Storage Rings & Imaging Techniques

2.3 Imaging Techniques

The geometric boundary conditions of a given location imposes certain requirements concerning the set-
up of an optical transfer beamline. In good approximation the theory of geometric optics yields sufficient
results for macroscopic imaging calculations. Together with the basics of geometric optics, an overview
of microscopic image broadening effects typical for synchrotron light sources will be discussed briefly
in the following section.

2.3.1 Geometric Optics

The divergent photon beam from a point source may be focused by an imaging lens with focal distance
f in order to obtain an image of the source. Pure geometric consideration including the theorem on
intersecting lines yield that the magnification M of an object with dimension12 G is

M =
B
G

=
b
g
, (2.46)

where B is the size of the image and g and b the distance of the imaging lens to the object and the image.
The focal distance f is connected to g and b via

1
f

=
1
g

+
1
b

=
1

M(g − f )
. (2.47)

The right part of the equation is obtained using Eq. (2.46).
If an image with magnification M1 is imaged again by a system with magnification M2 and so on, we

obtain as total magnification
Mtot =

∏
i

Mi. (2.48)

For example, a regular Kepler telescope consists of three convex imaging lenses (including the eye lens
of the observer). The ocular lens of the telescope acts as a collimator, relaying parallel light bundles.
Therefore the distance of eye and ocular lens can in principle be infinite. One obtains for final magni-
fication at the final image location b2

Mtot = M1 · M2 =
f1

g1 − f1
·

b2

g2
=

f1
g1 − f1

·
f3
f2
, (2.49)

since b2 = f3 and g2 = f2.

2.3.2 Transverse & Longitudinal Resolution

Two point sources can be resolved, when their images are distinguishable by an observer. In general,
images appear always broadened due to finite bandwidth of any imaging system. For macroscopic
considerations, those effects are somewhat neglectable. For synchrotron radiation observers however,
some of the following effects may be of relevance.

12 Distance from the optical axis.
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Depth of field

A longitudinally distributed source such as the curved electron beam within a dipole magnet can only
be imaged with a finite depth of field. This means that source points which are located slightly out of
the imaging system’s focal plane will yet be detected as circles of confusion. The effect vanishes with
curvature and is also dependent on the photon opening angle. Following [BER06] we find the effect of
broadening to be

σdof =
ρmax
√

6
= R

b

4g
√

6
φc

(
∆φx + 2φγ

)
, (2.50)

where ρmax is the maximum radius of a circle of confusion, R is the magnet bending radius, g and b the
distance from source and image, φx the limiting horizontal aperture, 2φγ the photon opening angle and
φc the smaller of the two.

Curvature

The curvature of the emission path broadens the beam additionally. Geometric considerations as in
[ZAN08] allow the calculation of the broadening magnitude:

σc ≈
1
2

Rφ2
γ, (2.51)

where R is the bending radius and φγ the photon opening angle.

Diffraction

Fraunhofer diffraction occurs when a light beam propagates through a finite aperture of size D. The
broadening is dependent on the wavelength λ and the distance of source and aperture g as in [ZAN08]:

σdiff ≈ 0.18
2λg
D
. (2.52)

Note that the slit width decreases the horizontal acceptance and therefore improves the resolution ac-
cording to depth-of-field and curvature correction. The diffraction effect however counteracts and dom-
inates at low values of D.

Dispersion

One is usually more interested in longitudinal broadening effects that are caused by dispersive me-
dia, such as the imaging lenses. The medium specific refractive index n = c/v changes for different
wavelengths, accounting for different propagation speeds v through the medium as compared to the
speed of light c. The corresponding time delay τ of two initially coincident waves with wavelengths λ1
and λ2 after a propagation distance ∆s can be calculated according to

τ = ∆tλ1 − ∆tλ2 =
∆s
c

(n(λ1) − n(λ2)). (2.53)

2.3.3 Operation Principle of a Streak Camera

Streak cameras resolve picosecond time structures of incident light. The principle of functionality is
somewhat similar to that of an oscilloscope and is illustrated in Fig. 2.8.
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Figure 2.8: Schematic functionality principle of a streak camera.

Incident light emits photo electrons from a photo cathode. The electrons propagate longitudinally and
therefore retain the temporal structure of the input signal. A time-dependent electric field ~̇E deflects the
electrons (vertically). The time dependency translates into a difference in height at which the electrons
are imaged when illuminating a fluorescent phosphorous screen. Its illumination is captured by a CCD
camera in order to obtain a digitized image. Summarized, electron distributions containing the time
structure of the incident light are quickly streaked across an imaging screen. The vertical spacial axis
now contains temporal information. In order to maximize resolution in the sweep direction, a thin slit
always collimates the incident light signal. One therefore loses information of one transverse dimension.

At electron synchrotron facilities, usually two modes of operation are performed in order to obtain
beam images:

Slow Sweep

When the deflecting electric field is changed linearly with time ( ~̇E = const), one obtains a (vertical)
single streak image. These measurements are of interested for transverse beam dynamics. However, the
faster the streak, the less intensity is distributed along a unit area. The signal to noise ratio decreases.
Low intensity must be compensated by integration. If one is interested in a precise longitudinal meas-
urement in respect to the synchrotron phase ψs, good synchronization is granted by another mode of
operation.

Synchroscan

The linear ramp of the changing electric field is replaced by a sinusoidal electric field, usually operat-
ing at a sub-harmonic of the accelerator’s master RF frequency fRF (e.g. fRF/4) . This yields precise
synchronization with the bunch spacing λRF and therefore offers good quality measurements of the lon-
gitudinal bunch structure in respect to the synchrotron phase ψs. At the fourth RF subharmonic, every
4th electron bunch is imaged onto the same spot.

In order to avoid this vertical integration, a horizontal slow sweeping electric field may be applied
which separates the signals. A schematic explanation of synchroscan with dual time base extension is
illustrated in Fig. 2.9. This operation mode combines precise longitudinal measurements with beam
dynamics on longer time scales.
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Figure 2.9: Schematic drawing of the synchroscan principle with dual time base extension and typical measure-
ment result. The red dots mark an incident light pulse swept across the phosphorous screen.

It must be noted that operation on the fourth sub-harmonic fRF/4 induces a phase jump of the streak
images after one lattice revolution, if the harmonic number h is not a multiple of 4. For example: If
pulse #1 hits the top flank of the sinusoidal signal, it is not displayed on the phosphorous screen. Pulse
#2 is imaged on the falling flank, signal #3 overshoots and the upward streak will be populated by signal
#4. After 274 incidents, signal #2 is now illuminating a rising flank and so on. Therefore one expects
that upper and lower horizontal image are similar on long horizontal time scales (e.g. ∆t � Trev).
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CHAPTER 3

The M7 Diagnostic Beamline

The set-up of the optical transfer beamline delivering the synchrotron radiation from the source point to
the diagnostic devices is described in this chapter. The beamline consists of an evacuated section guiding
the synchrotron light out of the accelerator tunnel into an external laboratory and of a diagnostics section
at atmospheric pressure. Front and back end were designed and installed within the scope of [ZAN13].
The design, set-up and commissioning of the diagnostics section was performed within the scope of this
thesis. The following chapter gives an overview of the experimental setup.

3.1 The Source Point

The source point for the beamline is determined by the center tangent of the spout pipe adjacent to
the M7 dipole vacuum chamber. A drawing is available in appendix A Fig. A.1. Drawing based
measurements determine the source point to be s = (38.53 ± 0.05) m downstream from the injection
septum. This also corresponds to a distance of (33.13 ± 0.05) m from the zero-point of the MAD-X
ELSA model. [FOR02; PRO11] The uncertainty in distance is an estimation comprising unavoidable
model, drawing and setup mismatches. In further considerations it will yet be neglected, since a precise
misalignment error study of all optical components would exceed the scope of this work. However, the
calculated optical values should be considered to be of good proximity to the actual values.

Based on the simulation illustrated in Fig. 2.3 and Fig. 3.1 the corresponding β-functions βx,z(s0) and
dispersion value Dx(s0) are obtained for the source point and summarized in Tab. 3.1. Corresponding
to Eq. (2.10), (2.35) and (2.30) the maximum and minimum beam size expected can be calculated
for different beam energies. The calculations are given in Tab. 3.2. Note that the emittance coupling
factor κ = (7.2 ± 2.7) % was obtained experimentally by [ZAN13] for a beam energy of 1.2 GeV. The
calculation assumes the same coupling for other beam energies.

21



3 The M7 Diagnostic Beamline

Figure 3.1: βx,z(s) and Dx(s) around the source point s0 of the M7 beamline. The source point is marked in red.

Table 3.1: Source point beam parameters for the M7 diagnostic beamline.
Parameter Value
βx(s0)[m] 4.92
βz(s0) [m] 9.74
Dx(s0) [m] 1.99

Table 3.2: Expected beam dimensions at the M7 source point for different beam energies E.
E [GeV] 0.5 1.2 3.2
σx [mm] 0.39 0.94 2.50
σz [mm] 0.11 0.27 0.73
σs,τ [ps] 14.3 34.3 91.4
σE
E [‰] 0.13 0.03 0.08
εx [nm rad] 18.4 106 752
εz [nm rad] 1.3 7.6 54.2

In order to observe transverse dynamics the final magnification Mtot of the beamline should be chosen
to achieve observation of a 10-σ distribution. Depending on the observable a variable set of magnifica-
tion is desirable.

3.2 The Photon Beamline

The 12 m long evacuated beamline guides the synchrotron light from the vacuum chamber of the
stretcher ring through the concrete shielding of the accelerator tunnel into an external laboratory. The
slit system and primary deflecting mirror are the most relevant components concerning the image prop-
erties.
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3.2 The Photon Beamline

The Beamline Aperture

An aperture defining slit system is positioned 2827 mm downstream from the source point. The slit
widths ∆x and ∆z define angular acceptances as in

∆φx =
∆x/2

d
. (3.1)

The variable rectangular aperture is currently set to ∆x = 9 mm and ∆x = 3 mm. The corresponding
angular acceptances from the slit are therefore

∆φx = 3.2 mrad, ∆φz = 1.1 mrad.

Using Eq. (2.45) one obtains for some relevant wavelengths the horizontal emission angles as listed in
Tab. 3.3.

Table 3.3: Horizontal photon emission angles.
λph [nm] εph [eV] φph [mrad]
700 1.77 2.66
400 3.10 2.20
217 5.72 1.80

We may conclude, that all emission angles are within the acceptance of the slit system.
It must be noted that during the current state of beamline development another aperture further down-

stream is limiting the horizontal acceptance. A 2" ≈ 25.4 mm wide mirror located at d = 12.37 m
distance from the source point is tilted by 45◦, providing an aperture of ∆x = 25.4 mm/

√
2 ≈ 17.5 mm

(compare with Fig. 3.2). It is located 12.37 m away from the source point. The corresponding accept-
ances are therefore

∆φx = 1.4 mrad, ∆φz = 1.1 mrad. (3.2)

The non-rectangular shape of the mirror narrows the acceptance even more. However, the measurement
results (see chapter 4) do not indicate any issues due to this circumstance, as transverse streak camera
images are more of qualitative character.

In order to get a feeling for the broadening effects, the contributions are listed for the center wavelength
λ = 400 nm in Tab. 3.4 according to Eq. (2.50), (2.51) and (2.52). Note that the values scale with mag-
nification Mtot.

The close distance of the slit system’s aperture to the source point and its narrow vertical slit width
cause a large amount of vertical diffraction contribution.

Table 3.4: Magnitude of broadening at λ = 400 nm.
Effect x z
σdof [µm] 6.5 6.5
σc [µm] 26.3 —
σdif [µm] 45 136
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(e)

(b)
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Figure 3.2: Photograph taken downwards onto the base plate (a) of the secondary deflecting mirror during illumin-
ation. The mirror aperture is smaller than the dimension of the light bundle, thus stray light (b) and the mirror’s
elliptical shadow (c) are clearly visible. The vertical aperture is defined by the slit system, as the blurry edges
at top and bottom (d) indicate. Yet another aperture seems to cut off horizontal parts of the light. (e) may be an
image of the round beam pipe of the vertical chicane. The flat edge (f) may be caused by the finite width of the
primary deflecting mirror.

The Primary Reflecting Mirror

The most fragile element of the beamline is the symmetric primary mirror deflecting the low energy
light components out of the accelerator plane. The mirror absorbs most of the synchrotron radiation’s
energy, therefore a rear sided water cooling system suppresses the increase of the mirror temperature.
The balance of heating deformation and water pressure was well studied in [HAE11] in order to pre-
serve excellent reflecting properties. Good vacuum (≈ 10−10 mbar) protects the mirror surface from
blackening due to reactions of the synchrotron light with residual gas molecules [SOL82]. Three ion
getter pumps (IGP) along the beamline and a non-evaporable getter pump (NEG) ensure a sufficient
suction capacity. The M7 beamline is illustrated in Fig. 3.3.

3.3 Diagnostics Section

The low energy synchrotron light exits the vacuum system vertically through a fused silica glass window
and enters an optically sealed box. Its ground plate is a 150 × 60 cm2 large optical table. All diagnostic
equipment and the corresponding optics are located here. Two streak camera properties determine the
requirements of the beamline:

1. A streak camera is quite light sensitive in certain modes of operation. On the other hand, some
modes require maximum achievable illumination.

2. Its active photo cathode has a size of only 0.15 × 4.42 mm2. A slit system usually reduces this
area additionally. One transverse dimension is always cut off.

Therefore the optical transfer beamline has to provide

• precise beam positioning capabilities for centered slit illumination,
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variable aperture

water cooled
primary mirror

X-rays

optically seald box
containing the diagnostic equipment

safety beam shutter

IGP vacuum pumps

NEG vacuum pump

water-cooled
 shutter

Figure 3.3: Overview of the M7 diagnostics beamline. An adjustable rectangular aperture is located ≈ 3 m down-
stream from the source point. The long beam pipe ensures a pressure gradient providing an ultra-high vacuum at
the primary reflecting mirror at the end of the pipe. The synchrotron light exits the vacuum vertically through a
fused silica glass window and enters an optically sealed box.
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Figure 3.4: Optics layout close to scale. A dichroic mirror separates the UV from visible synchrotron light. The
broad band visible light is magnified, rotated and attenuated before guided onto the streak camera’s input optics.

• proper image magnification accounting for the finite slit width,

• variable attenuation for machine protection purposes,

• modification of the transverse beam orientation and

• remote control capabilities where required.

The latter arises from the circumstance, that the beamline back-end is located in a radiologically con-
trolled area with no or limited access during machine operation. The assembly providing these require-
ments is illustrated close to scale in Fig. 3.4. The design has been inspired by [BER06]. However, the
boundary conditions at ELSA are unique. A custom solution had to be designed within the scope of this
thesis. The path of light is as follows:

A secondary mirror (of 2" diameter, compare with section 3.2) reflects the beam sidewards into the
optical plane (160 mm above the table’s surface). The side reflection causes an image rotation by 90◦. A
primary focusing lens with focal length f1 = 1000 m (λ = 530 nm) is located right after the secondary
reflecting mirror at g ≈ 12.38 m away from the source point. A tertiary reflecting mirror then reflects the
beam parallel to the long edge of the table. Broad band mirrors and lenses ensure maximum reflection
or transmission for the bandwidth of 200–700 nm.

UV camera

A CCD camera sensitive to the UV spectrum is used as beam position monitor. It measures the trans-
verse beam size and is operated in the UV region because of two reasons. According to Eq. (2.52) the
image broadening by diffraction is minimized. Secondly, the streak camera’s photo cathode response is
low at higher beam energies (compare with appendix A Fig. A.2). Withdrawn UV intensities from the
main light bundle should remain unnoticed. Therefore the UV components are separated by a long wave
pass dichroic mirror and reflected sidewards. They are then filtered by a bandpass (λ = 217 ± 10 nm)
and attenuated by neutral density filters. The camera is located at distance b ≈ 1080 mm downstream
from the primary lens. Its focal length is slightly shorter than stated for the center wavelength.The mag-
nification ratio is therefore M1 = b/g ≈ 0.087. The camera’s frame rate is limited to ≈ 16 Hz providing
a time resolution of 63 ms. Its performance is documented in [ZAN13].
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Magnifying Telescope

The first real image of the visible light is formed by the primary focusing lens at b1 ≈ 1090 mm
yielding a magnification of M1 ≈ 0.088. A second lens (g2 = f2 ≈ 100 mm) collimates the beam. The
collimation yields an extra degree of freedom for the positioning of optical systems further downstream.
Due to the parallel light bundles, the distance between lenses 2 & 3 is free to choose. The secondary
image is formed by the third lens at a distance b2 = f3 ≈ 200 mm. The total magnification according to
Eq. (2.49) is currently set to

Mtot = M1
f3
f2
≈ 0.176. (3.3)

Comparing with Tab. 3.2, Mtot satisfies the 10-σ condition for the largest beam size σx(3.2 GeV) ≈
2.5 mm1 since

10 · Mtot · σx(3.2 GeV) ≈ 4.4 � 4.42 mm = ∆xSC,max, (3.4)

where ∆xSC,max is the maximum photo cathode width of the streak camera.

Orientating Dove Prism

In order to obtain streak camera images of both transverse planes a Dove prism tilted by 45◦ can be
inserted into the beam. It rotates the image by 90◦. The mechanism of rotation is the same as performed
by the sidewards beam deflection in the vertical chicane. The beam is deflected partially upwards and
encounters total inner reflection on the tilted long side. The beam is then coupled out of the prism
and proceeds its original path2. The prism is mounted onto a motorized linear stage allowing remote
controlled insertion into the beam path.

Remote Controlled Attenuation and Adjustment

In order to illuminate the small photo cathode of the streak camera, careful beam adjustment must be
granted. Unavoidable optics misalignments require remote controlled fine tuning. Since motorized
equipment is of great expense only the most crucial components are remote controllable. Those include

• the two axis of the last mirror for aiming,

• four motorized linear stages for position fine tuning,

• five motorized filter flippers for a variable combination of attenuation and

• two stepper motors controlling the streak camera slits.

The motor controllers are connected to the PLC3 located in the vicinity of the M7 beamline back-end.
Motor control is granted by the ELSA control system. A switch box distributes the signals locally to the
different motors.

An additional observation camera films the front of the streak camera in order to provide aiming
feedback to the user.

Crucial for streak camera operation is a set of varying neutral density filters. Attenuation in the
range from OD4 τ=0–6 should be available. This is granted by a set of remote controlled motorized

1 Currently maximum beam energy at ELSA is 3.2 GeV.
2 When properly adjusted.
3 Programmable logic controller
4 Optical density as in 10τ being the factor of attenuation.
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filter flippers [THOc]. Currently five flippers with attenuation τ = 3, 2, 1, 0.5 and a bandpass filter at
λ = (480 ± 40) nm are installed.

Radiation Levels

Radiation surveys5 revealed that the left side of the optical table (source point orientated) is encountering
high levels of radiation >2 mSv/h (compare with Fig. 3.4). The sensitive CCD camera at the back-end
of the streak camera had therefore be protected by locating the streak camera closer to the center of
the optical table where radiation decreases. The current location compromises machine protection and
available space at the streak camera’s front.

A photograph of the set-up is given in Fig. 3.5.

3.4 The Streak Camera System

The streak camera available is the all-purpose model C10910 by Hamamatsu. It is expected to provide
a time resolution below 1 ps FWHM6.[HAM] It offers the option of locating its control computer more
than 100 m away from the camera system. The necessity is given by the seclusion of the laboratory and
its status as radiologically controlled area. The bridging occurs via fibre cables and corresponding patch
panels for USB, FireWire and Ethernet signals.

The analysis of beam dynamics is possible for a wide range of adjustable time windows which become
available due to three separate sweeping units.

The synchroscan unit M10911-01 resolves single bunches in time windows from 1.37 ns to 73.4 ps
and allows studies of longitudinal coherent beam dynamics as well as single bunch charge distributions.
It is operated at 1/4 of the 499.67 MHz cavity RF and therefore displays either even or odd bunches
depending on the set delay of the synchroscan signal. The delay can be set by the high stability delay
unit C12270. It stabilizes the synchroscan frequency phase based on an active feedback loop. This is
supposed to suppresses e.g. thermal signal drifts.

The dual time base extender unit M10916-01 performs linear sweeps along the second screen axis in
order to separate the bunch sequences. Time intervals availabe range from 60 ns to 100 ms and allow
sectional studies of the 548 ns long bunch train as well as studies of beam behavior over multiple turns.
The sweep repetition is limited to 10 Hz. Image sampling over multiple cycles therefore requires good
synchronization with the RF signal and the 1.82 MHz ring orbit clock. In order to avoid the phase shift
mentioned in section 2.3.3, the trigger signal for the horizontal sweep corresponds to half of the orbit
clock: 0.98 MHz. Also, any other trigger can be applied that is synchronized to a certain event. The
timing is performed by a DG645 delay generator.

The synchroscan unit can be exchanged with a linear slow sweep unit M10913-01, thus displaying
the continuous bunch train on time scales from 1.2 ns to 1 ms. This allows the study of beam dynamics
in both transverse planes.

The available time ranges are summarized in Tab. 3.5. A block diagram displaying the streak camera’s
subsystems is given in Fig. 3.6. The streak camera system can be operated from a terminal in the ELSA
control room.

5 Photons with εph > 14 keV are detected.
6 Full width at half maximum
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3.4 The Streak Camera System

Figure 3.5: Photograph of the M7 beamline diagnostic section. The light path is visualized for broad band (red)
and narrow band UV light (purple).
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3 The M7 Diagnostic Beamline

Table 3.5: Available sweep units with corresponding time scales and purpose.
Sweep Unit Sweep Range Field of Study
Synchroscan 73.4 ps – 1.37 ns Charge distribution

Dual time base 59.7 ns – 103 ms Long. dynamics
Slow Sweep 1.31 ns – 1.02 ms Transv. instabilities

Figure 3.6: Streak camera block diagram.
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CHAPTER 4

Measurements

The performance of the streak camera system is demonstrated in this chapter. Selected measurements
illustrate beam structure and dynamics under varying circumstances and at different time scales. The
measurements were taken during machine development shifts. They do not represent normal operation.
Some predictions by the principles of accelerator physics from chapter 2 are demonstrated and verified.

4.1 Slow Sweep

The slow sweep unit is used to obtain information about the macroscopic and microscopic bunch train
structure. Time scales available range from 2 ns to 1 ms. However, intensity and synchronization meet
their limits at the lower end. Note that the vertical axis corresponds to the time range and the horizontal
axis to the pixel number of the CCD camera.

Figure 4.1: Slow sweep across 5 µs: Top view of a slightly inhomogeneous filling pattern of 10 bunch trains.

Figure. 4.1 displays a 5 µs sweep. Since Trev = 548 ns, this corresponds to ≈ 10 × 274 bunches or
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10 bunch trains. This top view of the beam illustrates a slight macroscopic inhomogeneity of the charge
distribution. Since maximum beam homogeneity is desired during normal operation, streak camera
observations may be used to fine tune the injection procedure.

Figure 4.2: Slow sweep across 1 µs: The beam was distorted by the RF system, the repetitive filling gap is clearly
visible.

At 1 µs one can clearly see the repeating bunch train pattern in Fig. 4.2. The image was taken after
the beam was distorted by the RF system.

At a time window of 100 ns, the bunched beam structure becomes visible. Figure 4.3 displays a side
view

Figure 4.3: Slow sweep across 100 ns: The fine structure of the beam is visible (side view).

As the time window decreases the signal to noise ratio increases. Non-integrated single shot images
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4.2 Synchroscan

meet their limits at time windows around 20 ns. The bunches are clearly visible in Fig. 4.4 and 4.5, yet
the transverse dimensions can only be estimated. The centroid seems to be slightly displaced in both
images. One may suspect a vertical sinusoidal sequence. However, a single shot image does not reveal
any information about the phase relation. Note that the difference in background noise results from
different CCD integration times.

Figure 4.4: Slow sweep across 200 ns: Single shot image of horizontal beam displacements.

Figure 4.5: Slow sweep across 20 ns: Single shot image of vertical beam displacements.

4.2 Synchroscan

The synchroscan unit is capable of resolving single bunches and is synchronized to the master RF signal.
It provides two time scales: The sinusoidal electric field sweeps vertically, thus providing time windows
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4 Measurements

from 600–1200 ps. A slower horizontal sweep separates the bunch signals in time windows from 60 ns
to 100 ms. Note that only the smallest horizontal time ranges display the signals separately as shown in
Fig. 4.6.

Figure 4.6: Synchroscan across 60ns: Resolution of single bunches. Note that the image was integrated over
several turns in order to obtain a decent signal to noise ratio.

4.2.1 Bunch Length & Longitudinal Phase

The bunch length dependency on beam energy E is described by Eq. (2.32) and (2.31). If the synchrotron
frequencyωs is actively kept constant, one expects a linear dependency of bunch length and energy. This
measurement and the theoretical calculation is shown in Fig. 4.7.
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Figure 4.7: The bunch length σs increases linearly with energy when ωs is kept constant. The solid line marks the
calculated bunch length for fs = 88 kHz.

The synchrotron frequency was kept at fs = 88 kHz by adjusting the cavity voltage U0. The measure-
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4.2 Synchroscan

ment tolerance corresponds to the statistical variation of the images as e.g. observable in the first 10 ms
of the image shown in Fig. 4.10. The difference of intensity is yet not understood, but clearly has an
effect on the measured bunch length value.

The two nodes at 1.2 GeV (Fig. 4.7) correspond to a measurement with and without the bandpass
filter at λ = (480 ± 40) nm inserted. A small amount of broadening may be visible. However, the
statistical uncertainty dominates the difference. The Dove prism was not inserted, thus hinting that
generic dispersion is yet of low relevance even at short bunch lengths. A slight misalignment of the
Dove prism at the time of measurement prevented a direct comparison when moved in. Yet an example:
The dove prism is made of N-BK7 glass [THOd]. Refractive indices of interest are e.g. n(λ = 643.8 nm)
= 1.515 and n(λ = 404.7 nm) = 1.530.[Sch] According to Eq. (2.53) the time difference τ is thus for a
propagation distance of ∆s = 9 cm τ = 4.5 ps. It should therefore be of small but noticeable effect when
the prism is inserted.

Another bunch length measurement was performed when the cavity voltage U0 was kept at a constant
level. The synchroscan measurement is shown in Fig. 4.8. Note that no dual time base extension unit
was used in order to receive maximum spot illumination. This was the first bunch length measurement
performed and at the time no optical focusing elements were yet installed.

Figure 4.8: Bunch length and phase dependency on beam energy with constant cavity voltage U0.

One clearly observes a phase shift of the bunch centroid which corresponds to longitudinal focusing.
As the the magnetic field of the bending magnets is increased synchronously with the design energy1,
momentum compaction decreases the phase of arrival at the accelerating cavity. Hence, the electrons
interact with a higher electric field strength Eel,RF (compare with Eq. (2.19)). Bunch length and phase
calculations are compared in Fig. 4.9.

1 Hence the machine is named synchrotron.
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(a) Bunch length versus beam energy. The meas-
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(b) Phase shfit of ψs when U0 is kept constant.
The phase jump is an artifact corresponding to the
changed synchroscan delay.

Figure 4.9: The dependency of bunch length and phase shift on beam energy matches the expected values.

It is noticeable, that the measured bunch length seems systematically smaller than the expected value.
This may be an artifact caused by the measurement method: An area of interest is spanned across the
desired distribution and all contributing rows are horizontally integrated in order to obtain a vertical dis-
tribution function. If the distribution is non-uniform, the centroid of a Gaussian distribution is expected
to be more populated than the wings. The standard deviation seems decreased.

4.2.2 Grow-Damp-Measurements

A set of measurements was performed where the bunch-by-bunch feedback system [ROT12] was switched
off for 5 ms. The horizontal sweeping unit of the streak camera shared the same trigger pulse and there-
fore was able to capture the arising longitudinal instabilities.

Figure 4.10 is an excellent example of how coherent oscillations transform into incoherent oscilla-
tions. The feedback is switched off at ≈ 28 ms and an immediate coherent longitudinal oscillation starts
to grow. This is indicated by the rising and falling blue lines. Here, statistically seen, the extreme flanks
of the sinusoidal oscillation are most populated. This becomes clear when remembering that the deriv-
ative of a sine function is lowest at the extremes and highest at the zero crossing. Less population in
the center clearly indicates a phase correlation. As the bunch-by-bunch feedback is switched on again
at ≈ 33 ms, the coherent oscillation is starting to be damped. The process looks almost linear. Some
bunches seem to be tamed right away as the center becomes more populated from ≈ 36 ms on. Yet
extreme flanks start to arise at ≈ 42 ms. The vertically uniform filling reveals an incoherent oscillation
which seems to become more populated as time passes. The decrease of the amplitude corresponds to a
natural damping time τs ≈ 36 ms at 1.2 GeV beam energy. The incoherent oscillations remain long after
the coherent oscillation was damped by the feedback system. This result is expected when comparing
to section 2.1.1.
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4.2 Synchroscan

Figure 4.10: Grow-damp measuement at 1.2 GeV. The coherent oscillations are quickly damped by the feedback
system. After ≈ 10 ms incoherent oscillations arise. They are naturally damped after τs ≈ 36 ms.

Another example is depicted in Fig. 4.11. At 1.9 GeV beam energy the coherent longitudinal os-
cillation was damped quickly and no incoherent oscillations arose. However, multiple coherent re-
excitements can be observed. 35 ms after excitation, the exponential decay of the incoherent oscillations
is again visible. The beam then returns to initial stability.

Figure 4.11: Fast coherent damping and multiple re-excitements at a 1.9 GeV grow-damp measurement.
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4.2.3 ELSA at High Beam Currents

The ELSA pulse stretcher ring is currently optimized for circulating beam currents of around 30 mA.
In storage mode a beam current of 115 mA was injected at 1.2 GeV. At the time, the bunch-by-bunch
feedback system was not calibrated for high currents, hence Fig. 4.12 shows the natural longitudinal
instability of the accelerator.

Figure 4.12: Longitudinal beam instability at 115 mA beam current in storage mode.

The structure weakly reveals two somewhat outstanding sine waves, approximately shifted in phase
by π. The observable wavelength corresponds somewhat to λs = 1/ fs ≈ 11 µm. Since the image consists
of many overlaping signals, one may conclude that at least some parts of the bunch train coherently
oscillate with the corresponding phase difference of π.
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CHAPTER 5

Summary and Outlook

The streak camera system has been installed at ELSA in late May 2013. Beamline development could
however not be completed until mid October 2013. Restricted access to the experimental set-up area and
an unfortunate vacuum leakage in the beamline delayed further commissioning. First long-term camera
testing could be performed on October 25th 2013.1 The streak camera system performed well, yet minor
communication problems – likely due to the fiberglass extension – are to be solved in accordance to the
manufacturer.

The streak camera system has proven its capability of resolving beam dynamics transversally and lon-
gitudinally on time scales from milliseconds down to nanoseconds. Precise bunch length measurements
were performed at ELSA for the first time. It demonstrated good agreement with the predictions from
the theory of particle accelerator physics. The streak camera is the only diagnosis tool available which
is capable of detecting incoherent instabilities.

The M7 optical transfer beamline satisfies the streak camera’s requirements for integrated measure-
ments. Single shot measurements however suffer from poor signal to noise ratio.

The measured radiation levels at the back of the streak camera motivate the set-up of additional shield-
ing. It should be noted that the optical table may not be suited for heavy loads. Further investigations
are encouraged.

Extensive streak camera analysis of the post-accelerator-mode is encouraged in order to document
the current beam stability on microscopic time scales.

The commissioning of an electron extraction beamline located close to the streak camera setup is
currently taking place. A simulation of potential stray radiation should be performed in order to approx-
imate future radiation levels. Additional shielding may be relevant.

Possible upgrades enhancing the beamline performance are:

• Installation of a variable set of magnifying lens pairs accounting for the difference of vertical and
horizontal beam size. Remote controlled components are commercially available. However, the
space available at the front of the streak camera is limited.

• A 50 % optical bypass around the Dove prism would enable simultaneous imaging of vertical and
horizontal planes. Slow sweep measurements are usually thin streaks leaving a fair amount of
horizontal imaging space unused. Coupling studies on fast time scales could be performed this
way.

1 The reader may compare this date to the submission date of this document
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5 Summary and Outlook

• In order to increase the light intensity the secondary deflecting mirror should be replaced by a
larger reflecting surface. The increase of intensity is yet limited by other apertures in the vertical
chicane. Detailed alignment studies are encouraged in order to provide feasible solutions con-
cerning an intensity upgrade. One has to keep in mind the tedious work concerning readjusting
the optics.

• Dispersion due to the use of affordable transmitting optics has not seemed to be an issue so
far. However, reflective optics such as off-axis parabolic mirrors would be a more expensive
alternative.

• The trigger signals for the streak camera are currently transmitted by two >100 m long RG-58
coaxial cables. Attenuation at high frequencies flattens the TTL trigger signals. A better slow
sweep resolution may be achieved by replacing the corresponding cable.

The steak camera system is expected to detect manifold kinds of beam instabilities responsible for
the limitation of beam current and quality.

Once single bunch injection becomes available, the streak camera will be of great use for the docu-
mentation of current dependent effects such as bunch lengthening or bunch asymmetry.
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APPENDIX A

Appendix

A.1 Technical Drawing of the M7 dipole section

A.2 Streak Camera Photo Cathode Response
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A.2 Streak Camera Photo Cathode Response

Figure A.2: Response function of the S-20 streak camera photo cathode.
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